Magnetohydrodynamic Flow and Heat Transfer About a Rotating Disk

1962 ◽  
Vol 29 (1) ◽  
pp. 181-187 ◽  
Author(s):  
E. M. Sparrow ◽  
R. D. Cess

The effects of an axial magnetic field on the flow and heat transfer about a rotating disk have been analyzed. It is found that the presence of the magnetic field significantly decreases the flow velocities; but increases the torque required to maintain steady rotation of the disk. The heat transfer is also decreased by the magnetic field, with greater redutions occurring for low Prandtl number fluids.

2019 ◽  
Vol 26 (5) ◽  
pp. 1146-1160 ◽  
Author(s):  
M. K. Nayak ◽  
Rashid Mehmood ◽  
O. D. Makinde ◽  
O. Mahian ◽  
Ali J. Chamkha

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
M. Qasim ◽  
S. Noreen

This investigation deals with the Falkner-Skan flow of a Maxwell fluid in the presence of nonuniform applied magnetic fi…eld with heat transfer. Governing problems of flow and heat transfer are solved analytically by employing the homotopy analysis method (HAM). Effects of the involved parameters, namely, the Deborah number, Hartman number, and the Prandtl number, are examined carefully. A comparative study is made with the known numerical solution in a limiting sense and an excellent agreement is noted.


2006 ◽  
Vol 128 (6) ◽  
pp. 1236-1239 ◽  
Author(s):  
Hazem Ali Attia

The steady flow and heat transfer of a conducting fluid due to the rotation of an infinite, nonconducting disk in the presence of an axial uniform steady magnetic field are studied considering the ion slip and the Ohmic heating. The relevant equations are solved numerically using finite differences and the solution shows that the inclusion of the ion slip gives some interesting results.


2021 ◽  
Vol 73 (4) ◽  
pp. 045002
Author(s):  
M Gnaneswara Reddy ◽  
Naveen Kumar R ◽  
B C Prasannakumara ◽  
N G Rudraswamy ◽  
K Ganesh Kumar

2021 ◽  
Author(s):  
Yunxian Pei ◽  
Xuelan Zhang ◽  
Liancun Zheng ◽  
Xinzi Wang

Abstract In this paper, we study coupled flow and heat transfer of power-law nanofluids on a non-isothermal rough rotating disk subject to a magnetic field. The problem is formulated in terms of specified curvilinear orthogonal coordinate system. An improved BVP4C algorithm is proposed and numerical solutions are obtained. The influence of volume fraction, types and shapes of nanoparticles, magnetic field and power-law index on the flow and heat transfer behavior are discussed.<br/>Results show that the power-law exponents (PLE), nanoparticle volume fraction (NVF) and magnetic field inclination angle (MFIA) are almost no effects on velocities in wave surface direction, but have small or significant effects on azimuth direction. NVF have remarkable influence on local Nusselt number (LNN) and friction coefficients (FC) in radial and azimuth directions (AD). LNN increases with NVF while FC in AD decrease. The types of nanoparticles, magnetic field strength and inclination have small effects on LNN, but they have remarkable effects on the friction coefficients with positively correlated while the inclination is negatively correlated with heat transfer rate. The size of the nanoparticle shape factor is positively correlated with LNN.


2020 ◽  
Vol 12 (5) ◽  
pp. 657-661
Author(s):  
Zohreh Aliannejadi

In many cases such as production of metal sheets, the behavior of fluid flow and heat transfer in the neighborhood of a hot plate is very important. The CFD simulation of fluid flow is a widespread study that reveals detail information about the fluid flow in the calculated domain. In this study, the flow and heat transfer of a specific fluid in the above area of a stretching plate is examined analytically to find the variation of skin friction and Nusselt number. For this purpose, the similarity transformations can be employed to achieve the ordinary differential equations from the governing partial differential equations. The optimal homotopy asymptotic method (OHAM) is used to solve the ordinary differential equations which is applicable in solving of nonlinear equations. The effects of magnetic field on the analytical results from solving the equations are evaluated in detail. It is found that the thickness of the flow boundary layer decreases and the thickness of the thermal boundary layer increases by increasing in the magnetic field. Moreover, the Nusselt number is lower and skin friction is higher for the higher values of the magnetic field.


2000 ◽  
Vol 78 (9) ◽  
pp. 875-882 ◽  
Author(s):  
H A Attia

The steady laminar flow of an incompressible viscous electrically conducting non-Newtonian fluid of second grade impinging normal to a plane wall with heat transfer is investigated. An externally applied uniform magnetic field is applied normal to the wall, which is maintained at a constant temperature. A numerical solution for the governing momentum and energy equations is obtained. The effect of the characteristics of the non-Newtonian fluid and the magnetic field on both the flow and heat transfer is outlined. PACS Nos.: 47.50 and 47.15


Sign in / Sign up

Export Citation Format

Share Document