Phonon dispersion in Zr–Ti–Cu–Ni–Be bulk metallic glasses

2006 ◽  
Vol 381 (1-2) ◽  
pp. 239-245 ◽  
Author(s):  
P.C. Agarwal
2021 ◽  
Vol 32 ◽  
Author(s):  
Punit H Suthar ◽  
P N Gajjar

In the present paper, Phonon modes and elastic constant of three different concentrations of PdxNi1-xP (Pd64Ni16P20, Pd40Ni40P20 and Pd16Ni64P20) bulk metallic glass are calculated using (1) Hubbard-Beeby (HB) and (2) Takeno-Goda (TG) approach along with our well established local model potential. The Hartree (H), Farid et al (F) and Sarkar et al (S) local field correlation functions (LFCF) are employed to examine the effect of the screening function on the collective dynamics of Pd-Ni-P bulk metallic glasses. Results are also reported for phonon dispersion curve, propagation elastic wave and elastic properties viz: bulk modulus BT, modulus of rigidity G, Poisson’s ratio ξ, Young’s modulus Y, Debye temperature ƟD. However, the calculated elastic constants results agree well with other theoretical and available experimental data.


The phonon dispersion curves for bulk metallic glasses (BMGs) Pd40Ni10Cu30P20 and Pd64Ni16P20 are computed for the longitudinal and transverse phonon frequencies using the simple model given by Bhatia and Singh. Different dielectric screening functions are employed for the longitudinal mode. We obtain the values of the force constants β and δ calculated from the elastic constants of the material of the respective BMGs for computing the dispersion curves. The computed phonon dispersion curves show appropriate behaviour for both the longitudinal and transverse modes. The transverse sound velocity and the longitudinal sound velocities with various dielectric screenings are calculated in the long wavelength region from the computed dispersion curves for both the BMGs. The first peak position of the static structure factor is predicted from the dispersion curves. The values of sound velocities and the first peak of the static structure factor estimated from the computed dispersion curves show excellent agreement with the experimental values reported in literature for the BMGs under consideration and the results may be used for correlating other properties of the BMGs.


2003 ◽  
Vol 94 (5) ◽  
pp. 615-620 ◽  
Author(s):  
Mariana Calin ◽  
Jürgen Eckert ◽  
Ludwig Schultz

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2815
Author(s):  
Yu Hang Yang ◽  
Jun Yi ◽  
Na Yang ◽  
Wen Liang ◽  
Hao Ran Huang ◽  
...  

Bulk metallic glasses have application potential in engineering structures due to their exceptional strength and fracture toughness. Their fatigue resistance is very important for the application as well. We report the tension-tension fatigue damage behavior of a Zr61Ti2Cu25Al12 bulk metallic glass, which has the highest fracture toughness among BMGs. The Zr61Ti2Cu25Al12 glass exhibits a tension-tension fatigue endurance limit of 195 MPa, which is higher than that of high-toughness steels. The fracture morphology of the specimens depends on the applied stress amplitude. We found flocks of shear bands, which were perpendicular to the loading direction, on the surface of the fatigue test specimens with stress amplitude higher than the fatigue limit of the glass. The fatigue cracking of the glass initiated from a shear band in a shear band flock. Our work demonstrated that the Zr61Ti2Cu25Al12 glass is a competitive structural material and shed light on improving the fatigue resistance of bulk metallic glasses.


Sign in / Sign up

Export Citation Format

Share Document