Complex high-frequency magnetization dynamics and magnetoimpedance in thin films

2006 ◽  
Vol 384 (1-2) ◽  
pp. 172-174 ◽  
Author(s):  
R.B. da Silva ◽  
A.D.C. Viegas ◽  
M.A. Correa ◽  
A.M.H. de Andrade ◽  
R.L. Sommer
Author(s):  
Maxim Vladimirovich Bakhmetiev ◽  
Artem Dmitrievich Talantsev ◽  
Alexandr Sadovnikov ◽  
Roman Morgunov

Abstract A set of partially uncoupled NiFe/Cu/IrMn exchange biased thin films with variable thickness of non-magnetic Cu spacer is characterized by ferromagnetic resonance (FMR) and Brillouin light scattering (BLS) techniques applied complementary to reveal time-scale dependent effects of uncoupling between ferromagnetic and antiferromagnetic layers on high-frequency magnetization dynamics. The results correlate with interfacial grain texture variations and static magnetization behavior. Two types of crystalline phases with correlated microwave response are revealed at the ferro-antiferromagnet interface in NiFe/Cu/IrMn thin films. The first phase forms as well-textured NiFe/IrMn grains with NiFe (111)/IrMn (111) interface. The second phase consists of amorphous NiFe/IrMn grains. Intercalation of NiFe/IrMn by Cu clusters results in relaxation of tensile strains at the NiFe/IrMn interface leading to larger size of grains in both the NiFe and IrMn layers. The contributions of well-textured and amorphous grains to the high-frequency magnetization reversal behavior are distinguished by FMR and BLS techniques. Generation of a spin-wave mode is revealed in the well-textured phase, whereas microwave response of the amorphous phase is found to originate from magnetization rotation dominated by a rotatable magnetic anisotropy term. Under fixed FMR frequency, the increase of Cu thickness results in higher magnetization rotation frequencies in the amorphous grains.


2019 ◽  
pp. 20-25
Author(s):  
Anna Chlenova ◽  
◽  
Elizaveta Golubeva ◽  
Iuliia Novoselova ◽  
Ruslan Salikhov ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3360
Author(s):  
Yakir Dahan ◽  
Eldad Holdengreber ◽  
Elichai Glassner ◽  
Oz Sorkin ◽  
Shmuel E. Schacham ◽  
...  

A new measurement technique of electrical parameters of superconducting thin films at the Very High Frequency (VHF) range is described, based on resonators with microstrip (MS) structures. The design of an optimal resonator was achieved, based on a thorough theoretical analysis, which is required for derivation of the exact configuration of the MS. A theoretical model is presented, from which an expression for the attenuation of a MS line can be derived. Accordingly, simulations were performed, and an optimal resonator for the VHF range was designed and implemented. Production constraints of YBa2Cu3O7 (YBCO) limited the diameter of the sapphire substrate to 3″. Therefore, a meander configuration was formed to fit the long λ/4 MS line on the wafer. By measuring the complex input reflection coefficients of a λ/4 resonator, we extracted the quality factor, which is mainly affected by the dielectric and conductor attenuations. The experimental results are well fitted by the theoretical model. The dielectric attenuation was calculated using the quasi-static analysis of the MS line. An identical copper resonator was produced and measured to compare the properties of the YBCO resonator in reference to the copper one. A quality factor of ~6·105 was calculated for the YBCO resonator, three orders of magnitude larger than that of the copper resonator. The attenuation per unit length of the YBCO layer was smaller by more than five orders of magnitude than that of the copper.


2019 ◽  
Vol 669 ◽  
pp. 520-524
Author(s):  
Baptiste Bérenguier ◽  
Nicolas Barreau ◽  
Alexandre Jaffre ◽  
Daniel Ory ◽  
Jean-François Guillemoles ◽  
...  

2018 ◽  
Vol 66 (4) ◽  
Author(s):  
Thomas Cristiani ◽  
Nicholas Cadirov ◽  
Matthew Ehrman ◽  
Kai Kristiansen ◽  
Jeffrey Scott ◽  
...  

2020 ◽  
Vol 31 (15) ◽  
pp. 12101-12108
Author(s):  
Hai Liu ◽  
Zhong Yu ◽  
Chuanjian Wu ◽  
Xiaona Jiang ◽  
Rongdi Guo ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2506
Author(s):  
Zhongzhou Du ◽  
Dandan Wang ◽  
Yi Sun ◽  
Yuki Noguchi ◽  
Shi Bai ◽  
...  

The Fokker–Planck equation accurately describes AC magnetization dynamics of magnetic nanoparticles (MNPs). However, the model for describing AC magnetization dynamics of MNPs based on Fokker-Planck equation is very complicated and the numerical calculation of Fokker-Planck function is time consuming. In the stable stage of AC magnetization response, there are differences in the harmonic phase and amplitude between the stable magnetization response of MNPs described by Langevin and Fokker–Planck equation. Therefore, we proposed an empirical model for AC magnetization harmonics to compensate the attenuation of harmonics amplitude induced by a high frequency excitation field. Simulation and experimental results show that the proposed model accurately describes the AC M–H curve. Moreover, we propose a harmonic amplitude–temperature model of a magnetic nanoparticle thermometer (MNPT) in a high-frequency excitation field. The simulation results show that the temperature error is less than 0.008 K in the temperature range 310–320 K. The proposed empirical model is expected to help improve MNPT performance.


Sign in / Sign up

Export Citation Format

Share Document