First-principles investigation on the thickness-dependent optoelectronic properties of two-dimensional perovskite BA2SnI4

2021 ◽  
pp. 413070
Author(s):  
Meiping Liu ◽  
Yong Tang ◽  
Xiangli Zhong ◽  
Zheng Li ◽  
Yingtang Zhou ◽  
...  
2020 ◽  
Vol 41 (10) ◽  
pp. 1294-1301
Author(s):  
Chun-ying PU ◽  
◽  
Chun-ping LI ◽  
Lin-xia LYU ◽  
Da-wei ZHOU ◽  
...  

Author(s):  
Huabing Shu

Semiconducting two-dimensional Janus materials have drawn increasing attention for the novel optoelectronic properties. Here, employing first-principles calculations, we systematically explore the stability, electronic and optical properties of Janus diamane C4FCl....


2017 ◽  
Author(s):  
Lyudmyla Adamska ◽  
Sridhar Sadasivam ◽  
Jonathan J. Foley ◽  
Pierre Darancet ◽  
Sahar Sharifzadeh

Two-dimensional boron is promising as a tunable monolayer metal for nano-optoelectronics. We study the optoelectronic properties of two likely allotropes of two-dimensional boron using first-principles density functional theory and many-body perturbation theory. We find that both systems are anisotropic metals, with strong energy- and thickness-dependent optical transparency and a weak (<1%) absorbance in the visible range. Additionally, using state-of-the-art methods for the description of the electron-phonon and electron-electron interactions, we show that the electrical conductivity is limited by electron-phonon interactions. Our results indicate that both structures are suitable as a transparent electrode.


2019 ◽  
Vol 58 (SC) ◽  
pp. SCCB35 ◽  
Author(s):  
Tomoe Yayama ◽  
Anh Khoa Augustin Lu ◽  
Tetsuya Morishita ◽  
Takeshi Nakanishi

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Ning Zhao ◽  
Udo Schwingenschlögl

AbstractUtilizing a two-dimensional material in an electronic device as channel layer inevitably involves the formation of contacts with metallic electrodes. As these contacts can dramatically affect the behavior of the device, we study the electronic properties of monolayer Janus MoSSe in contact with different metallic electrodes by first-principles calculations, focusing on the differences in the characteristics of contacts with the two sides of MoSSe. In particular, we demonstrate that the Fermi level pinning is different for the two sides of MoSSe, with the magnitude resembling that of MoS2 or MoSe2, while both sides can form Ohmic contacts with common electrode materials without any further adaptation, which is an outstanding advantage over MoS2 and MoSe2.


Sign in / Sign up

Export Citation Format

Share Document