scholarly journals Maternal stress and high-fat diet effect on maternal behavior, milk composition, and pup ingestive behavior

2011 ◽  
Vol 104 (3) ◽  
pp. 474-479 ◽  
Author(s):  
Ryan H. Purcell ◽  
Bo Sun ◽  
Lauren L. Pass ◽  
Michael L. Power ◽  
Timothy H. Moran ◽  
...  
2020 ◽  
Vol 11 ◽  
Author(s):  
Kinning Poon

Excessive dietary fat intake has extensive impacts on several physiological systems and can lead to metabolic and nonmetabolic disease. In animal models of ingestion, exposure to a high fat diet during pregnancy predisposes offspring to increase intake of dietary fat and causes increase in weight gain that can lead to obesity, and without intervention, these physiological and behavioral consequences can persist for several generations. The hypothalamus is a region of the brain that responds to physiological hunger and fullness and contains orexigenic neuropeptide systems that have long been associated with dietary fat intake. The past fifteen years of research show that prenatal exposure to a high fat diet increases neurogenesis of these neuropeptide systems in offspring brain and are correlated to behavioral changes that induce a pro-consummatory and obesogenic phenotype. Current research has uncovered several potential molecular mechanisms by which excessive dietary fat alters the hypothalamus and involve dietary fatty acids, the immune system, gut microbiota, and transcriptional and epigenetic changes. This review will examine the current knowledge of dietary fat-associated changes in the hypothalamus and the potential pathways involved in modifying the development of orexigenic peptide neurons that lead to changes in ingestive behavior, with a special emphasis on inflammation by chemokines.


2017 ◽  
Vol 49 (12) ◽  
pp. 747-762 ◽  
Author(s):  
Y. Chen ◽  
J. Wang ◽  
S. Yang ◽  
S. Utturkar ◽  
J. Crodian ◽  
...  

High-fat diet (HFD) during lactation alters milk composition and is associated with development of metabolic diseases in the offspring. We hypothesized that HFD affects milk microRNA (miRNA) and mRNA content, which potentially impact offspring development. Our objective was to determine the effect of maternal HFD on secreted milk transcriptome. To meet this objective, 4 wk old female ICR mice were divided into two treatments: control diet containing 10% kcal fat and HFD containing 60% kcal fat. After 4 wk on CD or HFD, mice were bred while continuously fed the same diets. On postnatal day 2 (P2), litters were normalized to 10 pups, and half the pups in each litter were cross-fostered between treatments. Milk was collected from dams on P10 and P12. Total RNA was isolated from milk fat fraction of P10 samples and used for mRNA-Seq and small RNA-Seq. P12 milk was used to determine macronutrient composition. After 4 wk of prepregnancy feeding HFD mice weighed significantly more than did the control mice. Lactose and fat concentration were significantly ( P < 0.05) higher in milk of HFD dams. Pup weight was significantly greater ( P < 0.05) in groups suckled by HFD vs. control dams. There were 25 miRNA and over 1,500 mRNA differentially expressed (DE) in milk of HFD vs. control dams. DE mRNA and target genes of DE miRNA enriched categories that were primarily related to multicellular organismal development. Maternal HFD impacts mRNA and miRNA content of milk, if bioactive nucleic acids are absorbed by neonate differences may affect development.


2015 ◽  
Vol 61 ◽  
pp. 10 ◽  
Author(s):  
Veronica Bellisario ◽  
Pamela Panetta ◽  
Georgia Balsevich ◽  
Valentin Baumann ◽  
June Noble ◽  
...  

2015 ◽  
Vol 60 ◽  
pp. 138-150 ◽  
Author(s):  
Veronica Bellisario ◽  
Pamela Panetta ◽  
Georgia Balsevich ◽  
Valentin Baumann ◽  
June Noble ◽  
...  

2013 ◽  
Vol 219 (2) ◽  
pp. 131-143 ◽  
Author(s):  
Zhiguo Liu ◽  
Chun Yan Lim ◽  
Michelle Yu-Fah Su ◽  
Stephanie Li Ying Soh ◽  
Guanghou Shui ◽  
...  

Neonatal overnutrition results in accelerated development of high-fat diet (HFD)-induced metabolic defects in adulthood. To understand whether the increased susceptibility was associated with aggravated inflammation and dysregulated lipid metabolism, we studied metabolic changes and insulin signaling in a chronic postnatal overnutrition (CPO) mouse model. Male Swiss Webster pups were raised with either three pups per litter to induce CPO or ten pups per litter as control (CTR) and weaned to either low-fat diet (LFD) or HFD. All animals were killed on the postnatal day 150 (P150) except for a subset of mice killed on P15 for the measurement of stomach weight and milk composition. CPO mice exhibited accelerated body weight gain and increased body fat mass prior to weaning and the difference persisted into adulthood under conditions of both LFD and HFD. As adults, insulin signaling was more severely impaired in epididymal white adipose tissue (WAT) from HFD-fed CPO (CPO–HFD) mice. In addition, HFD-induced upregulation of pro-inflammatory cytokines was exaggerated in CPO–HFD mice. Consistent with greater inflammation, CPO–HFD mice showed more severe macrophage infiltration than HFD-fed CTR (CTR–HFD) mice. Furthermore, when compared with CTR–HFD mice, CPO–HFD mice exhibited reduced levels of several lipogenic enzymes in WAT and excess intramyocellular lipid accumulation. These data indicate that neonatal overnutrition accelerates the development of insulin resistance and exacerbates HFD-induced metabolic defects, possibly by worsening HFD-induced inflammatory response and impaired lipid metabolism.


Endocrinology ◽  
2017 ◽  
Vol 159 (2) ◽  
pp. 1088-1105 ◽  
Author(s):  
Daniel G Kougias ◽  
Laura R Cortes ◽  
Laura Moody ◽  
Steven Rhoads ◽  
Yuan-Xiang Pan ◽  
...  

2019 ◽  
Vol 89 (1-2) ◽  
pp. 45-54
Author(s):  
Akemi Suzuki ◽  
André Manoel Correia-Santos ◽  
Gabriela Câmara Vicente ◽  
Luiz Guillermo Coca Velarde ◽  
Gilson Teles Boaventura

Abstract. Objective: This study aimed to evaluate the effect of maternal consumption of flaxseed flour and oil on serum concentrations of glucose, insulin, and thyroid hormones of the adult female offspring of diabetic rats. Methods: Wistar rats were induced to diabetes by a high-fat diet (60%) and streptozotocin (35 mg/kg). Rats were mated and once pregnancy was confirmed, were divided into the following groups: Control Group (CG): casein-based diet; High-fat Group (HG): high-fat diet (49%); High-fat Flaxseed Group (HFG): high-fat diet supplemented with 25% flaxseed flour; High-fat Flaxseed Oil group (HOG): high-fat diet, where soya oil was replaced with flaxseed oil. After weaning, female pups (n = 6) from each group were separated, received a commercial rat diet and were sacrificed after 180 days. Serum insulin concentrations were determined by ELISA, the levels of triiodothyronine (T3), thyroxine (T4) and thyroid-stimulating hormone (TSH) were determined by chemiluminescence. Results: There was a significant reduction in body weight at weaning in HG (−31%), HFG (−33%) and HOG (44%) compared to CG (p = 0.002), which became similar by the end of 180 days. Blood glucose levels were reduced in HFG (−10%, p = 0.044) when compared to CG, and there was no significant difference between groups in relation to insulin, T3, T4, and TSH after 180 days. Conclusions: Maternal severe hyperglycemia during pregnancy and lactation resulted in a microsomal offspring. Maternal consumption of flaxseed reduces blood glucose levels in adult offspring without significant effects on insulin levels and thyroid hormones.


Sign in / Sign up

Export Citation Format

Share Document