Effect of temperature-dependent critical current density on the fracture behavior for a rectangular superconducting slab with a center crack

2019 ◽  
Vol 556 ◽  
pp. 36-42 ◽  
Author(s):  
Y.Q. Wang ◽  
B.L. Wang ◽  
K.F. Wang ◽  
L. Zheng
1999 ◽  
Vol 13 (13) ◽  
pp. 1645-1654 ◽  
Author(s):  
I. GR. DEAC ◽  
E. BURZO ◽  
A. V. POP ◽  
V. POP ◽  
R. TETEAN ◽  
...  

The intergranular properties of ( Y 1-x-y Zr x Ca y) Ba 2 Cu 3 O 7-δ ceramics were studies by using temperature-dependent ac susceptibility measurements at zero dc magnetic field. The intergranular critical current density was determined from ac susceptibility data by varying the field amplitude H ac . From the imaginary part of the complex susceptibility, χ″(T), we have determined the temperature dependence of the critical current density by using the Bean's model. The ac field dependencies of the intergrain χ″-peak temperatures T p are linear and agree with Müller critical state model. The results were analyzed in terms of superconductor-insulator-superconductor (SIS)-and superconductor-normal-superconductor (SNS)-type models for granular superconductors.


Author(s):  
Nguyen Khac Man ◽  
Nguyen Duc Hoa ◽  
Duong Thi Thanh Nhan

High-Tc superconducting polycrystalline Bi-2223 undoped sample (A0) and 5wt.% Ag-doped sample (A5) have been prepared by solid-state reaction method at 8550C with sintering time of 8 days. X-ray powder diffraction (XRD) results shown that the major phase of these samples is Bi-2223. The volume ratio of Bi-2223 phase observed to be increased from 78% for undoped sample (A0) to 95% for 5wt.% Ag-doped sample (A5). The enhancement of the onset of high-Tc superconductivity (Tc,onset = 112.5 K) in silver doping sample was observed by DC-resistivity measurements. From the AC-susceptibility measurements combined with Bean critical state model, the temperature dependent parabolic law of inter-granular or matrix critical current density (Jcm) was fitted. Some Jcm values were estimated from these parabolic laws. The results showed that 5wt% Ag-doping can make the Bi-2223 sample with nearly double critical current density.


Author(s):  
P. Lu ◽  
W. Huang ◽  
C.S. Chern ◽  
Y.Q. Li ◽  
J. Zhao ◽  
...  

The YBa2Cu3O7-x thin films formed by metalorganic chemical vapor deposition(MOCVD) have been reported to have excellent superconducting properties including a sharp zero resistance transition temperature (Tc) of 89 K and a high critical current density of 2.3x106 A/cm2 or higher. The origin of the high critical current in the thin film compared to bulk materials is attributed to its structural properties such as orientation, grain boundaries and defects on the scale of the coherent length. In this report, we present microstructural aspects of the thin films deposited on the (100) LaAlO3 substrate, which process the highest critical current density.Details of the thin film growth process have been reported elsewhere. The thin films were examined in both planar and cross-section view by electron microscopy. TEM sample preparation was carried out using conventional grinding, dimpling and ion milling techniques. Special care was taken to avoid exposure of the thin films to water during the preparation processes.


Author(s):  
I-Fei Tsu ◽  
D.L. Kaiser ◽  
S.E. Babcock

A current theme in the study of the critical current density behavior of YBa2Cu3O7-δ (YBCO) grain boundaries is that their electromagnetic properties are heterogeneous on various length scales ranging from 10s of microns to ˜ 1 Å. Recently, combined electromagnetic and TEM studies on four flux-grown bicrystals have demonstrated a direct correlation between the length scale of the boundaries’ saw-tooth facet configurations and the apparent length scale of the electrical heterogeneity. In that work, enhanced critical current densities are observed at applied fields where the facet period is commensurate with the spacing of the Abrikosov flux vortices which must be pinned if higher critical current density values are recorded. To understand the microstructural origin of the flux pinning, the grain boundary topography and grain boundary dislocation (GBD) network structure of [001] tilt YBCO bicrystals were studied by TEM and HRTEM.


Sign in / Sign up

Export Citation Format

Share Document