scholarly journals Kadomtsev–Petviashvili equation: One-constraint method and lump pattern

2022 ◽  
pp. 133152
Author(s):  
Jie-Yang Dong ◽  
Liming Ling ◽  
Xiaoen Zhang
2001 ◽  
Vol 29 (3) ◽  
pp. 186-196 ◽  
Author(s):  
X. Yan

Abstract A method is described to predict relative body turn up endurance of radial truck tires using the finite element method. The elastomers in the tire were simulated by incompressible elements for which the nonlinear mechanical properties were described by the Mooney-Rivlin model. The belt, carcass, and bead were modeled by an equivalent orthotropic material model. The contact constraint of a radial tire structure with a flat foundation and rigid rim was treated using the variable constraint method. Three groups of tires with different body turn up heights under inflation and static footprint loading were analyzed by using the finite element method. Based on the detail analysis for stress analysis parameters in the critical regions in the tires, the relative body turn up edge endurance was predicted.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 224
Author(s):  
Ghaylen Laouini ◽  
Amr M. Amin ◽  
Mohamed Moustafa

A comprehensive study of the negative-order Kadomtsev–Petviashvili (nKP) partial differential equation by Lie group method has been presented. Initially the infinitesimal generators and symmetry reduction, which were obtained by applying the Lie group method on the negative-order Kadomtsev–Petviashvili equation, have been used for constructing the reduced equations. In particular, the traveling wave solutions for the negative-order KP equation have been derived from the reduced equations as an invariant solution. Finally, the extended improved (G′/G) method and the extended tanh method are described and applied in constructing new explicit expressions for the traveling wave solutions. Many new and more general exact solutions are obtained.


Author(s):  
E.R Johnson ◽  
G.G Vilenski

This paper describes steady two-dimensional disturbances forced on the interface of a two-layer fluid by flow over an isolated obstacle. The oncoming flow speed is close to the linear longwave speed and the layer densities, layer depths and obstacle height are chosen so that the equations of motion reduce to the forced two-dimensional Korteweg–de Vries equation with cubic nonlinearity, i.e. the forced extended Kadomtsev–Petviashvili equation. The distinctive feature noted here is the appearance in the far lee-wave wake behind obstacles in subcritical flow of a ‘table-top’ wave extending almost one-dimensionally for many obstacles widths across the flow. Numerical integrations show that the most important parameter determining whether this wave appears is the departure from criticality, with the wave appearing in slightly subcritical flows but being destroyed by two-dimensional effects behind even quite long ridges in even moderately subcritical flow. The wave appears after the flow has passed through a transition from subcritical to supercritical over the obstacle and its leading and trailing edges resemble dissipationless leaps standing in supercritical flow. Two-dimensional steady supercritical flows are related to one-dimensional unsteady flows with time in the unsteady flow associated with a slow cross-stream variable in the two-dimensional flows. Thus the wide cross-stream extent of the table-top wave appears to derive from the combination of its occurrence in a supercritical region embedded in the subcritical flow and the propagation without change of form of table-top waves in one-dimensional unsteady flow. The table-top wave here is associated with a resonant steepening of the transition above the obstacle and a consequent twelve-fold increase in drag. Remarkably, the table-top wave is generated equally strongly and extends laterally equally as far behind an axisymmetric obstacle as behind a ridge and so leads to subcritical flows differing significantly from linear predictions.


2021 ◽  
Vol 19 (1) ◽  
pp. 297-305
Author(s):  
Yuting Zhu ◽  
Chunfang Chen ◽  
Jianhua Chen ◽  
Chenggui Yuan

Abstract In this paper, we study the following generalized Kadomtsev-Petviashvili equation u t + u x x x + ( h ( u ) ) x = D x − 1 Δ y u , {u}_{t}+{u}_{xxx}+{\left(h\left(u))}_{x}={D}_{x}^{-1}{\Delta }_{y}u, where ( t , x , y ) ∈ R + × R × R N − 1 \left(t,x,y)\in {{\mathbb{R}}}^{+}\times {\mathbb{R}}\times {{\mathbb{R}}}^{N-1} , N ≥ 2 N\ge 2 , D x − 1 f ( x , y ) = ∫ − ∞ x f ( s , y ) d s {D}_{x}^{-1}f\left(x,y)={\int }_{-\infty }^{x}f\left(s,y){\rm{d}}s , f t = ∂ f ∂ t {f}_{t}=\frac{\partial f}{\partial t} , f x = ∂ f ∂ x {f}_{x}=\frac{\partial f}{\partial x} and Δ y = ∑ i = 1 N − 1 ∂ 2 ∂ y i 2 {\Delta }_{y}={\sum }_{i=1}^{N-1}\frac{{\partial }^{2}}{{\partial }_{{y}_{i}}^{2}} . We get the existence of infinitely many nontrivial solutions under certain assumptions in bounded domain without Ambrosetti-Rabinowitz condition. Moreover, by using the method developed by Jeanjean [13], we establish the existence of ground state solutions in R N {{\mathbb{R}}}^{N} .


2019 ◽  
Vol 528 ◽  
pp. 121320 ◽  
Author(s):  
Muhammad Hamid ◽  
Muhammad Usman ◽  
Tamour Zubair ◽  
Rizwan Ul Haq ◽  
Ahmad Shafee

Open Physics ◽  
2011 ◽  
Vol 9 (1) ◽  
Author(s):  
Abdul-Majid Wazwaz

AbstractIn this work, two new completely integrable extensions of the Kadomtsev-Petviashvili (eKP) equation are developed. Multiple soliton solutions and multiple singular soliton solutions are derived to demonstrate the compatibility of the extensions of the KP equation.


Sign in / Sign up

Export Citation Format

Share Document