Control of low-frequency noise for piping systems via the design of coupled band gap of acoustic metamaterials

2016 ◽  
Vol 380 (29-30) ◽  
pp. 2322-2328 ◽  
Author(s):  
Yanfei Li ◽  
Huijie Shen ◽  
Linke Zhang ◽  
Yongsheng Su ◽  
Dianlong Yu
2021 ◽  
Vol 248 ◽  
pp. 01041
Author(s):  
Du Zhehua

Bragg scattering phonon crystal and locally resonant acoustic metamaterials were introduced. In order to generate noise reduction, the lattice constant of Bragg scattering phonon crystal should be of the same order of magnitude as the wave length of the sound wave, therefore, its application field is limited. Locally resonant acoustic metamaterials consume sound energy by coupling its own resonant frequencies with those of sound waves at close range. Its size is two orders of magnitude smaller than the wavelength of sound wave; thus, the control of low-frequency noise by small-size acoustic metamaterials is realized. Locally resonant acoustic metamaterials have some extraordinary physical characteristic in the conventional medium for their special acoustic structural units, such as negative refraction and negative mass density. Especially in low frequency band, they have acoustic forbidden band in which the sound wave transmission is prohibited. Acoustic structural unit having resonant characteristics has been developed. Surface-mounted resonant element plate structures and thin film acoustic metamaterials are the normal types of locally resonant acoustic metamaterials. Their research and development provide a new method for low-frequency noise control.


2016 ◽  
Vol 25 (5) ◽  
pp. 055047 ◽  
Author(s):  
Kun Jia ◽  
Mian Wang ◽  
Tongqing Lu ◽  
Jinhua Zhang ◽  
Tiejun Wang

Author(s):  
Boqiang Zhang ◽  
Penghui Chen ◽  
Huiyong Chen ◽  
Tianpei Feng ◽  
Chengxin Cai ◽  
...  

Because of the position of the motor and the excitation of the suspension system, a wheel-driven electric bus produces low-frequency noise, which is difficult to resolve through traditional sound absorption and noise reduction technology. Through an interior noise test of a wheel-driven electric bus, we found that the interior low-frequency noise had a considerable influence on the driver. In order to solve this problem, a locally resonant phononic crystal was used to meet the requirements of vibration and noise reduction for the wheel-driven electric bus. The intrinsic relationship between the band gap distribution of the locally resonant phononic crystal and the topology was established by training a neural network, so as to achieve the desired effect of the bandgap model on the basis of the input bandgap range. Upon an increase in the number of models, the prediction model error decreased gradually. This method could quickly obtain the structural parameters of the locally resonant phononic crystal with the expected band gap, which made it convenient to apply locally resonant phononic crystals to the vibration and noise reduction of wheel-driven electric buses and in other fields.


2021 ◽  
pp. 2105712
Author(s):  
Lingling Wu ◽  
Zirui Zhai ◽  
Xinguang Zhao ◽  
Xiaoyong Tian ◽  
Dichen Li ◽  
...  

Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 995
Author(s):  
Chuanmin Chen ◽  
Zhaofeng Guo ◽  
Songtao Liu ◽  
Hongda Feng ◽  
Chuanxi Qiao

Localized resonance phononic crystals (LRPCs) are increasingly attracting scientists’ attention in the field of low-frequency noise reduction because of the excellent subwavelength band gap characteristics in the low-frequency band. However, the LRPCs have always had the disadvantage that the noise reduction band is too narrow. In this paper, in order to solve this problem, LRPCs based on double-layer plates with cavity structures are designed. First, the energy bands of phononic crystals plate with different thicknesses were calculated by the finite element method (FEM). At the same time, the mechanism of band gap generation was analyzed in combination with the modalities. Additionally, the influence of structure on the sound transmission loss (STL) of the phononic crystals plate and the phononic crystals cavity plates were analyzed, which indicates that the phononic crystals cavity plates have notable characteristics and advantages. Moreover, this study reveals a unique ”cavity cave” pattern in the STL diagram for the phononic crystals cavity plates, and it was analyzed. Finally, the influence of structural factors on the band structure and STL of phononic crystals cavity plates are summarized, and the theoretical basis and method guidance for the study of phononic crystals cavity plates are provided. New ideas are also provided for the future design and research of phononic crystals plate along with potential applications in low-frequency noise reduction.


2011 ◽  
Vol 299-300 ◽  
pp. 1208-1211
Author(s):  
Yu Yang He ◽  
Xiao Xiong Jin ◽  
Huan Wei

Automotive low frequency noise is difficult to control in a traditional way. Locally resonant phononic crystals (PCs) can forbid the propagation of certain frequency. This PCs’ structure also can be fabricated to apply in automotive noise control. The simulation method is applied to establish the model of two-dimensional (2D) locally resonant phononic crystals in order to research the impact of the parameters on the propagation. The band gap of locally resonant phononic crystals in z mode is calculated using the simplified model.


Sign in / Sign up

Export Citation Format

Share Document