Robust prediction of complex spatiotemporal states through machine learning with sparse sensing

2020 ◽  
Vol 384 (15) ◽  
pp. 126300 ◽  
Author(s):  
G.D. Barmparis ◽  
G. Neofotistos ◽  
M. Mattheakis ◽  
J. Hizanidis ◽  
G.P. Tsironis ◽  
...  
2015 ◽  
Vol 8 (7) ◽  
pp. 5419-5435 ◽  
Author(s):  
W. Paja ◽  
M. Wrzesień ◽  
R. Niemiec ◽  
W. R. Rudnicki

Abstract. The climate models are extremely complex pieces of software. They reflect best knowledge on physical components of the climate, nevertheless, they contain several parameters, which are too weakly constrained by observations, and can potentially lead to a crash of simulation. Recently a study by Lucas et al. (2013) has shown that machine learning methods can be used for predicting which combinations of parameters can lead to crash of simulation, and hence which processes described by these parameters need refined analyses. In the current study we reanalyse the dataset used in this research using different methodology. We confirm the main conclusion of the original study concerning suitability of machine learning for prediction of crashes. We show, that only three of the eight parameters indicated in the original study as relevant for prediction of the crash are indeed strongly relevant, three other are relevant but redundant, and two are not relevant at all. We also show that the variance due to split of data between training and validation sets has large influence both on accuracy of predictions and relative importance of variables, hence only cross-validated approach can deliver robust prediction of performance and relevance of variables.


2016 ◽  
Vol 9 (3) ◽  
pp. 1065-1072 ◽  
Author(s):  
Wiesław Paja ◽  
Mariusz Wrzesien ◽  
Rafał Niemiec ◽  
Witold R. Rudnicki

Abstract. Climate models are extremely complex pieces of software. They reflect the best knowledge on the physical components of the climate; nevertheless, they contain several parameters, which are too weakly constrained by observations, and can potentially lead to a simulation crashing. Recently a study by Lucas et al. (2013) has shown that machine learning methods can be used for predicting which combinations of parameters can lead to the simulation crashing and hence which processes described by these parameters need refined analyses. In the current study we reanalyse the data set used in this research using different methodology. We confirm the main conclusion of the original study concerning the suitability of machine learning for the prediction of crashes. We show that only three of the eight parameters indicated in the original study as relevant for prediction of the crash are indeed strongly relevant, three others are relevant but redundant and two are not relevant at all. We also show that the variance due to the split of data between training and validation sets has a large influence both on the accuracy of predictions and on the relative importance of variables; hence only a cross-validated approach can deliver a robust prediction of performance and relevance of variables.


2021 ◽  
Vol 873 (1) ◽  
pp. 012087
Author(s):  
Imam A. Sadisun ◽  
Rendy D. Kartiko ◽  
Indra A. Dinata

Abstract Landslide susceptibility modeling using neural network (ANN) are applied to semi detailed volcanic-sedimentary water catchment. Annually landslide occurred in catchment area frequently in unconsolidated and weathered material combined with uncertainty in rainfall pattern that complicated landslide occurrence. Data used for analysis including landslide inventory, geology, digital elevation related data, distance to stream, and several other available data. Results show that machine learning method yield fair result data based on evaluation on Area under Curve (AUC). Thus, it can be suggested that machine learning methods for landslide susceptibility model could still be develop to produce robust prediction model with different characterization of parameter data and machine learning parameters.


2018 ◽  
Vol 48 ◽  
pp. 87-95 ◽  
Author(s):  
Krithika Manohar ◽  
Thomas Hogan ◽  
Jim Buttrick ◽  
Ashis G. Banerjee ◽  
J. Nathan Kutz ◽  
...  

Author(s):  
Jayashree M. Kudari

Developments in machine learning techniques for classification and regression exposed the access of detecting sophisticated patterns from various domain-penetrating data. In biomedical applications, enormous amounts of medical data are produced and collected to predict disease type and stage of the disease. Detection and prediction of diseases, such as diabetes, lung cancer, brain cancer, heart disease, and liver diseases, requires huge tests and that increases the size of patient medical data. Robust prediction of a patient's disease from the huge data set is an important agenda in in this chapter. The challenge of applying a machine learning method is to select the best algorithm within the disease prediction framework. This chapter opts for robust machine learning algorithms for various diseases by using case studies. This usually analyzes each dimension of disease, independently checking the identified value between the limits to monitor the condition of the disease.


2021 ◽  
Author(s):  
Xue Wang ◽  
Shaolei Shi ◽  
Guijiang Wang ◽  
Wenxue Luo ◽  
Xia Wei ◽  
...  

Abstract Background Recently, machine learning (ML) is becoming attractive in genomic prediction, while its superiority in genomic prediction and the choosing of optimal ML methods are needed investigation. Results In this study, 2566 Chinese Yorkshire pigs with reproduction traits records were used, they were genotyped with GenoBaits Porcine SNP 50K and PorcineSNP50 panel. Four ML methods, including support vector regression (SVR), kernel ridge regression (KRR), random forest (RF) and Adaboost.R2 were implemented. Through 20 replicates of five-fold cross-validation, the genomic prediction abilities of ML methods were explored. Compared with genomic BLUP(GBLUP), single-step GBLUP (ssGBLUP) and Bayesian method BayesHE, our results indicated that ML methods significantly outperformed. The prediction accuracy of ML methods was improved by 19.3%, 15.0% and 20.8% on average over GBLUP, ssGBLUP and BayesHE, ranging from 8.9–24.0%, 7.6–17.5% and 11.1–24.6%, respectively. In addition, ML methods yielded smaller mean squared error (MSE) and mean absolute error (MAE) in all scenarios. ssGBLUP yielded improvement of 3.7% on average compared to GBLUP, and the performance of BayesHE was close to GBLUP. Among four ML methods, SVR and KRR had the most robust prediction abilities, which yielded higher accuracies, lower bias, lower MSE and MAE, and comparable computing efficiency as GBLUP. RF demonstrated the lowest prediction ability and computational efficiency among ML methods. Conclusion Our findings demonstrated that ML methods are more efficient than traditional genomic selection methods, and it could be new options for genomic prediction.


2020 ◽  
Vol 43 ◽  
Author(s):  
Myrthe Faber

Abstract Gilead et al. state that abstraction supports mental travel, and that mental travel critically relies on abstraction. I propose an important addition to this theoretical framework, namely that mental travel might also support abstraction. Specifically, I argue that spontaneous mental travel (mind wandering), much like data augmentation in machine learning, provides variability in mental content and context necessary for abstraction.


Sign in / Sign up

Export Citation Format

Share Document