Forces between circular magnetic hole defects and vortex cores in antiferromagnetic nanodisks

2021 ◽  
pp. 127609
Author(s):  
R.C. Silva ◽  
R.L. Silva ◽  
A.R. Pereira
Keyword(s):  
Author(s):  
Daniel Cavasin ◽  
Abdullah Yassine

Abstract Bond pad metal corrosion was observed during assembly process characterization of a 0.13um Cu microprocessor device. The bond pad consisted of 12kÅ of Al-0.5%Cu atop 9kÅ of Cu, separated by a thin Ta diffusion barrier. The corrosion was first noted after the wafer dicing process. Analysis of the pad surface revealed pitting-type corrosion, consistent with published reports of classic galvanic cell reactions between Al2Cu (theta phase) particles and the surrounding Al pad metal. Analysis of the bond pads on samelot wafers which had not been diced showed higher-thanexpected incidence of hillock and pit hole defects on the Al surface. Statistically designed experiments were formulated to investigate the possibility that the observed pre-saw pad metal defects act as nucleation sites for galvanic corrosion during the sawing process. Analyses of the experimental samples were conducted using optical and scanning electron microscopy, along with focused ion beam deprocessing and energy dispersive X-ray. This paper explores the relationship between the presence of these pre-existing defects and the propensity for the bond pads to corrode during the dicing process, and reviews the conditions under which pit hole defects are formed during the final stages of the Cu-metallized wafer fabrication process. Indications are that strict control of wafer fab backend processes can reduce or eliminate the incidence of such defects, resulting in elimination of bond pad corrosion in the wafer dicing process.


2021 ◽  
Vol 127 (8) ◽  
Author(s):  
R. Radhakrishnan Sumathi

AbstractAluminium nitride (AlN) is a futuristic material for efficient next-generation high-power electronic and optoelectronic applications. Sublimation growth of AlN single crystals with hetero-epitaxial approach using silicon carbide substrates is one of the two prominent approaches emerged, since the pioneering crystal growth work from 1970s. Many groups working on this hetero-epitaxial seeding have abandoned AlN growth altogether due to lot of persistently encountered problems. In this article, we focus on most of the common problems encountered in this process such as macro- and micro-hole defects, cracks, 3D-nucleation, high dislocation density, and incorporation of unintentional impurity elements due to chemical decomposition of the substrate at very high temperatures. Possible ways to successfully solve some of these issues have been discussed. Other few remaining challenges, namely low-angle grain boundaries and deep UV optical absorption, are also presented in the later part of this work. Particular attention has been devoted in this work on the coloration of the crystals with respect to chemical composition. Wet chemical etching gives etch pit density (EPD) values in the order of 105 cm-2 for yellow-coloured samples, while greenish coloration deteriorates the structural properties with EPD values of at least one order more.


1976 ◽  
Vol 14 (12) ◽  
pp. 5466-5472 ◽  
Author(s):  
J. O. Rubio ◽  
H. T. Tohver ◽  
Y. Chen ◽  
M. M. Abraham
Keyword(s):  

2019 ◽  
Vol 131 (34) ◽  
pp. 11796-11801 ◽  
Author(s):  
Sun‐Min Jung ◽  
Jungmin Park ◽  
Dongbin Shin ◽  
Hu Young Jeong ◽  
DongKyu Lee ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
pp. 365 ◽  
Author(s):  
Jie Yu ◽  
Dongqi Zhang ◽  
Hui Li ◽  
Changhui Song ◽  
Xin Zhou ◽  
...  

For a non-contact, non-destructive quality evaluation, laser ultrasonic testing (LUT) has received increasing attention in complex manufacturing processes, such as additive manufacturing (AM). This work assessed the LUT method for the inspection of internal hole defects in additive manufactured Ti-6Al-4V part. A Q-switched pulsed laser was utilized to generate ultrasound waves on the top surface of a Ti-6Al-4V alloy part, and a laser Doppler vibrometer (LDV) was utilized to detect the ultrasound waves. Sub-millimeter (0.8 mm diameter) internal hole defect was successfully detected by using the established LUT system in pulse-echo mode. The method achieved a relatively high resolution, suggesting significant application prospects in the non-destructive evaluation of AM part. The relationship between the diameter of the hole defects and the amplitude of the laser-generated Rayleigh waves was studied. X-ray computed tomography (XCT) was conducted to validate the results obtained from the LUT system.


2019 ◽  
Vol 58 (34) ◽  
pp. 11670-11675 ◽  
Author(s):  
Sun‐Min Jung ◽  
Jungmin Park ◽  
Dongbin Shin ◽  
Hu Young Jeong ◽  
DongKyu Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document