oxygenated functional groups
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 17)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Vol 12 (5) ◽  
pp. 6632-6650

2,5-furandicarboxylic acid (FDCA) is produced from the selective oxidation of 5-hydroxymethylfurfural (HMF) and is an important platform molecule applied in the pharmaceutical and petrochemical industries. Activated carbons produced from renewable resources are useful materials due to their physicochemical properties, defined mainly by the oxygenated functional groups on their surface. This work studies the oxidation of HMF to FDCA over Pt catalysts supported on açaí coal. The catalysts were characterized by N2 adsorption, XPS, ToF-SIMS, FTIR, XRD, Raman, TEM, SEM, TPR-H2, and TGA/DTA. The conversion of HMF to FDCA in an alkaline medium occurred via hydroxymethyl-2-furancarboxylic acid (HMFCA), which was oxidized to 5-formylfurancarboxylic acid (FFCA) and FDCA. The catalytic tests showed a high conversion of HMF with a 93.6% yield of FDCA. The excellent results were attributed to the high dispersion of Pt on the support and the presence of oxygenated functional groups on the coal surface. The functional groups increased the interaction between Pt-HMF and Pt-furan intermediates and favored a higher dispersion of platinum (53.3%) due to an anchoring effect.


Marine Drugs ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. 636
Author(s):  
Olga Morarescu ◽  
Marina Grinco ◽  
Veaceslav Kulciţki ◽  
Sergiu Shova ◽  
Nicon Ungur

Scalarane sesterterpenoids emerged as interesting bioactive natural products which were isolated extensively from marine sponges and shell-less mollusks. Some representatives were also reported recently from superior plants. Many scalarane sesterterpenoids displayed a wide spectrum of valuable properties, such as antifeedant, antimicrobial, antifungal, antitubercular, antitumor, anti-HIV properties, cytotoxicity and stimulation of nerve growth factor synthesis, as well as anti-inflammatory activity. Due to their important biological properties, many efforts have been undertaken towards the chemical synthesis of natural scalaranes. The main synthetic challenges are connected to their complex polycyclic framework, chiral centers and different functional groups, in particular the oxygenated functional groups at the C-12 position, which are prerequisites of the biological activity of many investigated scalaranes. The current work addresses this problem and the synthesis of 17-oxo-20-norscalaran-12α,19-O-lactone is described. It was performed via the 12α-hydroxy-ent-isocopal-13(14)-en-15-al obtained from (-)-sclareol as an accessible starting material. The tetracyclic lactone framework was built following an addition strategy, which includes the intramolecular Michael addition of a diterpenic acetoacetic ester and an intramolecular aldol condensation reaction as key synthetic steps. The structure and stereochemistry of the target compound have been proven by X-Ray diffraction method.


Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2035
Author(s):  
Gloria Márquez-Ruiz ◽  
Francisca Holgado ◽  
María Victoria Ruiz-Méndez ◽  
Joaquín Velasco

Chemical changes occurring in dietary lipid oxidation compounds throughout the gastrointestinal tract are practically unknown. The first site for potential chemical modifications is the stomach due to the strong acidic conditions. In this study, model lipids representative of the most abundant groups of dietary oxidation compounds were subjected to in vitro gastric conditions. Thus, methyl linoleate hydroperoxides were used as representative of the major oxidation compounds formed in food storage at low and moderate temperatures. Methyl 9,10-epoxystearate, 12-oxostearate and 12-hydroxystearate were selected as model compounds bearing the oxygenated functional groups predominantly found in oxidation compounds formed at the high temperatures of frying. Analyses were performed using gas-liquid chromatography/flame ionization detection/mass spectrometry and high performance-liquid chromatography/ultraviolet detection. Losses of methyl 9,10-epoxystearate and linoleate hydroperoxides in the ranges 17.8–58.8% and 42.3–61.7% were found, respectively, whereas methyl 12-oxostearate and methyl 12-hydroxystearate remained unaltered. Although quantitative data of the compounds formed after digestion were not obtained, methyl 9,10-dihydroxystearate was detected after digestion of methyl 9,10-epoxystearate, and some major volatiles were detected after digestion of linoleate hydroperoxides. Overall, the results showed that significant modifications of dietary oxidized lipids occurred during gastric digestion and supported that the low pH of the gastric fluid played an important role.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1154
Author(s):  
Nour Houda M’sakni ◽  
Taghreed Alsufyani

Ulva lactuca has been used to remove many toxic substances from industrial wastewater. In the present study we tried to optimize the efficiency of U. lactuca as an adsorbent of methylene blue (MB) in aqueous solution. U. lactuca was chemically treated with sulfuric acid (UL-H) and sodium hydroxide (UL-OH) and by a slow pyrolysis process (carbonization process) at high temperature T = 600 °C (UL-T) and compared to the nonactive Ulva (UL-NA) and the water insoluble substance (UL-WIS). Several spectroscopic analyses were carried out to detect the biosorption mechanisms of Ulva to remove MB in solution. The effects of different parameters on the adsorption process were studied, i.e., pH (2–10), mass concentration (1–10 g L−1), and contact time (0–120 min). The results showed that the best adsorption of MB by Ulva was at pH = 8, with 5 g L−1 of biomass at 75 min; the best adsorption capacity was 625.0 mg g−1 for UL-OH, which was able to remove more than 89% of MB compared to UL-T, whose removal rate did not exceed 5%. Fourier-transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy (EDX), and scanning electron microscopy (SEM) indicated the presence of oxygenated functional groups with a highly porous surface. The kinetic studies confirmed that the majority of treatments follow the pseudo-second-order type. The mathematical models showed that Langmuir model is favorable to UL-OH, UL-WIS, and UL-NA. According to the experimental results, the primary treatment for U. lactuca is a promising environmentally friendly method and an economical strategy for removing MB from aqueous solution. This method can help address the growing demand for adsorbents used in environmental protection processes and the resultant increase in their price.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 979 ◽  
Author(s):  
Joseph R. Sanford ◽  
Rebecca A. Larson

Biochar soil amendment to agricultural systems can reduce nitrogen (N) leaching; however, application to agricultural nitrogen treatment systems has not been extensively explored. The objective of this study was to assess the impact on N leaching in soils receiving repeated N applications which may be observed in agricultural treatment systems. In this study, 400 °C, 700 °C, and oxidized 700 °C corncob biochar was amended to sandy loam soil columns at 5% (wt/wt) to assess the impacts to N cycling following repeated synthetic N applications. Columns received weekly applications of either organic N (ORG-N), ammonium (NH4+-N), or nitrate (NO3−-N) and the N effluent, gaseous emissions, and soil N retention was measured. Biochar produced at 400 °C significantly reduced N leaching compared to control columns by 19% and 15% for ORG-N and NH4+-N, respectively, with application concentrations similar to silage bunker runoff. For NO3−-N applications, 700 °C biochar significantly reduced leaching by 25% compared to the controls. The primary mechanism reducing N effluent for biochar amended columns was enhanced soil retention of ORG-N and NO3−-N. Biochar surface chemistry analysis measured an increase in oxygenated functional groups and cationic minerals on the biochar surface, which likely enhanced retention through cationic bridging or the development of an organomineral layer on the biochar surface. Results indicated biochar amendment to agricultural treatment systems receiving N runoff may reduce the risk of N leaching.


Minerals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 452
Author(s):  
Gen Huang ◽  
Jiaqi Xu ◽  
Pengyue Geng ◽  
Jihui Li

The problem of low-rank coal flotation continues to be a challenge due to the poor hydrophobicity and abundant oxygenated functional groups on particle surfaces. In this study, carrier flotation was used to improve the flotation performance of low-rank coal with polystyrene as a carrier material. Kerosene was used as a collector and played a role in the adhesion of fine low-rank coal to polystyrene due to its hydrophobic properties. The carrier feature of polystyrene was demonstrated by Turbiscan Lab Expert stability analysis and scanning electron microscopy analysis. The flotation experiments revealed that the optimum conditions were: collector dosage 5000 g/t, pulp concentration 40 g/L, and the ratio of low-rank coal to polystyrene 100:10. Under these conditions, the combustible recovery by carrier flotation was obtained as 70.59% when the ash content was 12.32%, which increased by 25.68 points compared with the combustible recovery of conventional flotation under almost the same ash content. The fine coal particles coated the coarse polystyrene particles through hydrophobic interactions between the polystyrene and hydrocarbon chains of the kerosene adsorbed on coal particles. The results suggested that the flotation performance of low-rank coal was significantly improved by carrier flotation with polystyrene, especially for fine particles.


MRS Advances ◽  
2020 ◽  
Vol 5 (52-53) ◽  
pp. 2679-2684
Author(s):  
Dashuai Li ◽  
Ling Tong ◽  
Bo Gao

AbstractAn atmospheric pressure microwave plasma tubular furnace apparatus (MPTF) for the rapid synthesis of carbon nanotubes (CNTs) has been developed. CNTs have been synthesized by an Argon-Hydrogen microwave plasma using ethanol vapor as carbon source with the furnace temperature of 800 °C at the atmospheric pressure. The synthesized CNTs have been analyzed by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), and are shown to be multi-walled and tangled and chemically connected to form a high-density network with the diameter at the range of 25-70 nm. The measurement of X-ray photoelectron spectroscopy (XPS) indicates that a large number of oxygenated functional groups grown on the surface of CNTs. These properties proved that the CNTs could be utilized as nanoscale templates for various applications.


Sign in / Sign up

Export Citation Format

Share Document