scholarly journals Thermodynamics of two-dimensional conformal field theory dual to black holes

2014 ◽  
Vol 735 ◽  
pp. 301-304 ◽  
Author(s):  
Jia-ju Zhang
2011 ◽  
Vol 26 (22) ◽  
pp. 1601-1611 ◽  
Author(s):  
JØRGEN RASMUSSEN

We consider Kerr–Newman–AdS–dS black holes near extremality and work out the near-horizon geometry of these near-extremal black holes. We identify the exact U (1)L× U (1)R isometries of the near-horizon geometry and provide boundary conditions enhancing them to a pair of commuting Virasoro algebras. The conserved charges of the corresponding asymptotic symmetries are found to be well-defined and nonvanishing and to yield central charges cL≠0 and cR = 0. The Cardy formula subsequently reproduces the Bekenstein–Hawking entropy of the black hole. This suggests that the near-extremal Kerr–Newman–AdS–dS black hole is holographically dual to a non-chiral two-dimensional conformal field theory.


2012 ◽  
Vol 27 (09) ◽  
pp. 1250048 ◽  
Author(s):  
IBRAHIMA BAH ◽  
LEOPOLDO A. PANDO ZAYAS ◽  
CÉSAR A. TERRERO-ESCALANTE

Using a holographic proposal for the geometric entropy we study its behavior in the geometry of Schwarzschild black holes in global AdSp for p = 3, 4, 5. Holographically, the entropy is determined by a minimal surface. On the gravity side, due to the presence of a horizon on the background, generically there are two solutions to the surfaces determining the entanglement entropy. In the case of AdS3, the calculation reproduces precisely the geometric entropy of an interval of length l in a two-dimensional conformal field theory with periodic boundary conditions. We demonstrate that in the cases of AdS4 and AdS5 the sign of the difference of the geometric entropies changes, signaling a transition. Euclideanization implies that various embedding of the holographic surface are possible. We study some of them and find that the transitions are ubiquitous. In particular, our analysis renders a very intricate phase space, showing, for some ranges of the temperature, up to three branches. We observe a remarkable universality in the type of results we obtain from AdS4 and AdS5.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Suting Zhao ◽  
Christian Northe ◽  
René Meyer

Abstract We consider symmetry-resolved entanglement entropy in AdS3/CFT2 coupled to U(1) Chern-Simons theory. We identify the holographic dual of the charged moments in the two-dimensional conformal field theory as a charged Wilson line in the bulk of AdS3, namely the Ryu-Takayanagi geodesic minimally coupled to the U(1) Chern-Simons gauge field. We identify the holonomy around the Wilson line as the Aharonov-Bohm phases which, in the two-dimensional field theory, are generated by charged U(1) vertex operators inserted at the endpoints of the entangling interval. Furthermore, we devise a new method to calculate the symmetry resolved entanglement entropy by relating the generating function for the charged moments to the amount of charge in the entangling subregion. We calculate the subregion charge from the U(1) Chern-Simons gauge field sourced by the bulk Wilson line. We use our method to derive the symmetry-resolved entanglement entropy for Poincaré patch and global AdS3, as well as for the conical defect geometries. In all three cases, the symmetry resolved entanglement entropy is determined by the length of the Ryu-Takayanagi geodesic and the Chern-Simons level k, and fulfills equipartition of entanglement. The asymptotic symmetry algebra of the bulk theory is of $$ \hat{\mathfrak{u}}{(1)}_k $$ u ̂ 1 k Kac-Moody type. Employing the $$ \hat{\mathfrak{u}}{(1)}_k $$ u ̂ 1 k Kac-Moody symmetry, we confirm our holographic results by a calculation in the dual conformal field theory.


1992 ◽  
Vol 07 (05) ◽  
pp. 853-876 ◽  
Author(s):  
V. A. FATEEV ◽  
S. L. LUKYANOV

This is the first part of a paper studying the quantum group structure of two-dimensional conformal field theory with additional symmetries. We discuss the properties of the Poisson structures possessing classical W-invariance. The Darboux variables for these Poisson structures are constructed.


Author(s):  
Sergei L. Lukyanov ◽  
Alexander B. Zamolodchikov

This is a two-part course about the integrability of two-dimensional non-linear sigma models (2D NLSM). In the first part general aspects of classical integrability are discussed, based on the O(3) and O(4) sigma-models and the field theories related to them. The second part is devoted to the quantum 2D NLSM. Among the topics considered are: basic facts of conformal field theory, zero-curvature representations, integrals of motion, one-loop renormalizability of 2D NLSM, integrable structures in the so-called cigar and sausage models, and their RG flows. The text contains a large number of exercises of varying levels of difficulty.


2008 ◽  
Vol 23 (39) ◽  
pp. 3307-3315 ◽  
Author(s):  
FEDELE LIZZI ◽  
PATRIZIA VITALE

We discuss conformal symmetry on the two-dimensional noncommutative plane equipped with Moyal product in the twist deformed context. We show that the consistent use of the twist procedure leads to results which are free from ambiguities. This lends support to the importance of the use of twist symmetries in noncommutative geometry.


Sign in / Sign up

Export Citation Format

Share Document