scholarly journals Holographic entanglement entropy in superconductor phase transition with dark matter sector

2015 ◽  
Vol 750 ◽  
pp. 420-426 ◽  
Author(s):  
Yan Peng
2016 ◽  
Vol 31 (14n15) ◽  
pp. 1650085
Author(s):  
Yan Peng ◽  
Lu Chen ◽  
Guohua Liu

We generalize the Stückelberg holographic superconductor model by including dark matter sector in the five-dimensional AdS soliton space–time beyond the probe limit. We study phase transitions with large charge of the scalar field through the condensation of the scalar operator and the holographic topological entanglement entropy of the system. We find that the entanglement entropy is a good probe of the order of phase transitions and second-order critical phase transition points. By investigating the behaviors of the entanglement entropy, we show that the larger coupling parameter [Formula: see text] makes the first-order phase transition more difficult to happen. In all, we conclude that the entanglement entropy can be used to study the effects of the dark matter sector in this general insulator/superconductor system.


2016 ◽  
Vol 26 (06) ◽  
pp. 1750046
Author(s):  
Yan Peng ◽  
Tao Chen ◽  
Guohua Liu ◽  
Pengwei Ma

We generalize the holographic superconductor model with dark matter sector by including the Stückelberg mechanism in the four-dimensional anti-de Sitter (AdS) black hole background away from the probe limit. We study effects of the dark matter sector on the [Formula: see text]-wave scalar condensation and find that the dark matter sector affects the critical phase transition temperature and also the order of phase transitions. At last, we conclude that the dark matter sector brings richer physics in this general metal/superconductor system.


2018 ◽  
Vol 33 (03) ◽  
pp. 1850008
Author(s):  
Sen Hu ◽  
Guozhen Wu

We consider backreacted [Formula: see text] coupled with [Formula: see text] massive flavors introduced by D7 branes. The backreacted geometry is in the Veneziano limit with fixed [Formula: see text]. By dividing one of the directions into a line segment with length l, we get two subspaces. Then we calculate the entanglement entropy between them. With the method of [I. R. Klebanov, D. Kutasov and A. Murugan, Nucl. Phys. B 796, 274 (2008)], we are able to find the cut-off independent part of the entanglement entropy and finally find that this geometry shows no confinement/deconfinement phase transition at zero temperature from the holographic entanglement entropy point of view similar to the case in pure [Formula: see text].


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Salomeh Khoeini-Moghaddam ◽  
Farzad Omidi ◽  
Chandrima Paul

Abstract Recently, it was proposed that a $$ T\overline{T} $$ T T ¯ deformed CFT is dual to a gravity theory in an asymptotically AdS spacetime at finite radial cutoff. Motivated by this proposal, we explore some aspects of Hyperscaling Violating geometries at finite cutoff and zero temperature. We study holographic entanglement entropy, mutual information (HMI) and entanglement wedge cross section (EWCS) for entangling regions in the shape of strips. It is observed that the HMI shows interesting features in comparison to the very small cutoff case: it is a decreasing function of the cutoff. It is finite when the distance between the two entangling regions goes to zero. The location of its phase transition also depends on the cutoff, and decreases by increasing the cutoff. On the other hand, the EWCS is a decreasing function of the cutoff. It does not show a discontinuous phase transition when the HMI undergoes a first-order phase transition. However, its concavity changes. Moreover, it is finite when the distance between the two strips goes to zero. Furthermore, it satisfies the bound EW ≥ $$ \frac{I}{2} $$ I 2 for all values of the cutoff.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Xian-Ming Liu ◽  
Hong-Bo Shao ◽  
Xiao-Xiong Zeng

Phase transition of AdS black holes in Lorentz breaking massive gravity has been studied in the framework of holography. We find that there is a first-order phase transition (FPT) and second-order phase transition (SPT) both in Bekenstein-Hawking entropy- (BHE-) temperature plane and in holographic entanglement entropy- (HEE-) temperature plane. Furthermore, for the FPT, the equal area law is checked and for the SPT, the critical exponent of the heat capacity is also computed. Our results confirm that the phase structure of HEE is similar to that of BHE in Lorentz breaking massive gravity, which implies that HEE and BHE have some potential underlying relationship.


2018 ◽  
Vol 33 (07) ◽  
pp. 1850033
Author(s):  
Sen Hu ◽  
Guozhen Wu

We consider backreacted [Formula: see text] coupled with [Formula: see text] massless flavors introduced by D7-branes at nonzero temperature. The backreacted geometry is in the Veneziano limit. The temperature of this system is related to the event horizon at [Formula: see text]. Dividing one of the spatial directions into a line segment with length [Formula: see text], we will calculate the holographic entanglement entropy (HEE) between the two subspaces. We study the behavior near the event horizon, and finally find that there exists confinement/deconfinement phase transition phenomenon near the horizon since the difference between the entanglement entropy of the connected minimal surface and the disconnected one changes sign.


Sign in / Sign up

Export Citation Format

Share Document