scholarly journals Discrete Painlevé system and the double scaling limit of the matrix model for irregular conformal block and gauge theory

2019 ◽  
Vol 789 ◽  
pp. 605-609 ◽  
Author(s):  
H. Itoyama ◽  
T. Oota ◽  
Katsuya Yano
1991 ◽  
Vol 06 (15) ◽  
pp. 1387-1396
Author(s):  
FREDDY PERMANA ZEN

Universality with respect to triangulations is investigated in the Hermitian one-matrix model approach to 2-D quantum gravity for a potential containing both even and odd terms, [Formula: see text]. With the use of analytical and numerical calculations, I find that the universality holds and the model describes pure gravity, which leads in the double scaling limit to coupled equations of Painlevé type.


1993 ◽  
Vol 08 (13) ◽  
pp. 1205-1214 ◽  
Author(s):  
K. BECKER ◽  
M. BECKER

We present the solution of the discrete super-Virasoro constraints to all orders of the genus expansion. Integrating over the fermionic variables we get a representation of the partition function in terms of the one-matrix model. We also obtain the non-perturbative solution of the super-Virasoro constraints in the double scaling limit but do not find agreement between our flows and the known supersymmetric extensions of KdV.


1992 ◽  
Vol 07 (11) ◽  
pp. 937-953 ◽  
Author(s):  
SUMIT R. DAS ◽  
AVINASH DHAR ◽  
GAUTAM MANDAL ◽  
SPENTA R. WADIA

We explore consequences of W-infinity symmetry in the fermionic field theory of the c=1 matrix model. We derive exact Ward identities relating correlation functions of the bilocal operator. These identities can be expressed as equations satisfied by the effective action of a three-dimensional theory and contain non-perturbative information about the model. We use these identities to calculate the two-point function of the bilocal operator in the double scaling limit. We extract the operator whose two-point correlator has a single pole at an (imaginary) integer value of the energy. We then rewrite the W-infinity charges in terms of operators in the matrix model and use this to derive constraints satisfied by the partition function of the matrix model with a general time dependent potential.


1997 ◽  
Vol 12 (18) ◽  
pp. 1301-1315 ◽  
Author(s):  
B. Sathiapalan

The matrix model for IIB superstring proposed by Ishibashi, Kawai, Kitazawa and Tsuchiya is investigated. Consideration of planar and non-planar diagrams suggests that large-N perturbative expansion is consistent with the double scaling limit proposed by the above authors. We write down a Wilson loop that can be interpreted as a fundamental string vertex operator. The one-point tadpole in the presence of a D-string has the right form and this can be viewed as a matrix model derivation of the boundary conditions that define a D-string. We also argue that if worldsheet coordinates σ and τ are introduced to the fundamental string, then the conjugate variable d/dσ and d/dτ can be interpreted as the D-string worldsheet coordinates. In this way the SL (2Z) duality group of the IIB superstring becomes identified with the symplectic group acting on (p,q).


Author(s):  
TAKESHI OOTA

The β-deformed matrix models of Selberg type are introduced. They are exactly calculable by using the Macdonald-Kadell formula. With an appropriate choice of the integration contours and interactions, the partition function of the matrix model can be identified with the Nekrasov partition function for SU(2) gauge theory with Nf = 4. Known properties of good q-expansion basis for the matrix model are summarized.


2011 ◽  
Vol 26 (20) ◽  
pp. 3439-3467 ◽  
Author(s):  
H. ITOYAMA ◽  
N. YONEZAWA

We consider the half-genus expansion of the resolvent function in the β-deformed matrix model with three-Penner potential under the AGT conjecture and the 0d–4d dictionary. The partition function of the model, after the specification of the paths, becomes the DF conformal block for fixed c and provides the Nekrasov partition function expanded both in [Formula: see text] and in ϵ = ϵ1+ϵ2. Exploiting the explicit expressions for the lower terms of the free energy extracted from the above expansion, we derive the first few ϵ corrections to the Seiberg–Witten prepotential in terms of the parameters of SU(2), Nf = 4, [Formula: see text] supersymmetric gauge theory.


1994 ◽  
Vol 03 (01) ◽  
pp. 203-206
Author(s):  
LAURENT HOUART

We study in the double scaling limit the two-matrix model which represents the sum over closed and open random surfaces coupled to an Ising model. The boundary conditions are characterized by the fact that the Ising spins sitting at the vertices of the boundaries are all in the same state. We obtain the string equation.


Sign in / Sign up

Export Citation Format

Share Document