scholarly journals Configuration entropy in the soft wall AdS/QCD model and the Wien law

2021 ◽  
pp. 136485
Author(s):  
Nelson R.F. Braga ◽  
Octavio C. Junqueira
2021 ◽  
Vol 18 (2) ◽  
pp. 172988142199228
Author(s):  
Wendong Zhang ◽  
Wen Zhang ◽  
Zhenguo Sun

This article demonstrates a reconfigurable soft wall-climbing robot actuated by electromagnet. The robot follows the earthworm movement gait and is capable of translation, deflection, and rotation movement while working on a sloping ferromagnetic wall. Also the electromagnetic actuator provides a significant improvement in expeditiousness compared with existing actuation modes. The speed of the robot can be adjusted by modulating the power frequency. When the period of motion cycle is 30 ms, the speed is about 26.5 mm s−1, and the robot can rotate with a velocity of 14.1° s−1 on the horizontal plane. It can also climb a vertical wall at the speed of 12.6 mm s−1. The robot is composed of two kinds of modules which can be connected by the magnets embedded. It can also be reconfigured in different working conditions, such as crossing an inaccessible gap, and thus has the potential to be used in flaw detection, surface cleaning, and exploration of ferromagnetic structures.


2014 ◽  
Vol 26 ◽  
pp. 1460066 ◽  
Author(s):  
ALFREDO VEGA ◽  
IVAN SCHMIDT ◽  
THOMAS GUTSCHE ◽  
VALERY E. LYUBOVITSKIJ

We discuss an holographic soft wall model to describe nucleon properties. We pay special attention to nucleon spectrum, GPDs in the skewness case for nucleons and electroproduction of the N (1440) Roper resonance in soft-wall AdS/QCD.


Author(s):  
A. M. Savchenko ◽  
Yu. V. Konovalov ◽  
A. V. Laushkin

The purpose of this work is to show that during mixing, two hidden (latent) processes proceed simultaneously and compensate each other: the first initiates an increase in the average heat capacity, equal in magnitude to the entropy of mixing, which requires energy absorption to ensure a constant temperature, the second initiates simultaneous latent heat release by strengthening interatomic bonds. The passage of these two processes during mixing shows the identity of the vibrational and configurational (statistical) entropy.


Sign in / Sign up

Export Citation Format

Share Document