holographic model
Recently Published Documents


TOTAL DOCUMENTS

186
(FIVE YEARS 49)

H-INDEX

28
(FIVE YEARS 3)

2022 ◽  
Vol 258 ◽  
pp. 07005
Author(s):  
Kazuo Ghoroku ◽  
Kouji Kashiwa ◽  
Yoshimasa Nakano ◽  
Motoi Tachibana ◽  
Fumihiko Toyoda

In a holographic model, which was used to investigate the color superconducting phase of QCD, a dilute gas of instantons is introduced to study the nuclear matter. The free energy of the nuclear matter is computed as a function of the baryon chemical potential in the probe approximation. Then the equation of state is obtained at low temperature. Using the equation of state for the nuclear matter, the Tolman-Oppenheimer-Volkov equations for a cold compact star are solved. We find the mass-radius relation of the star, which is similar to the one for quark star. This similarity implies that the instanton gas given here is a kind of self-bound matter.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
Kazem Bitaghsir Fadafan ◽  
Jesús Cruz Rojas

AbstractWe study a bottom-up holographic description of the QCD colour superconducting phase in the presence of higher derivative corrections. We expand this holographic model in the context of Gauss–Bonnet (GB) gravity. The Cooper pair condensate has been investigated in the deconfinement phase for different values of the GB coupling parameter $$\lambda _{G B}$$ λ GB , we observe a change in the value of the critical chemical potential $$\mu _c$$ μ c in comparison to Einstein gravity. We find that $$\mu _c$$ μ c grows as $$\lambda _{G B}$$ λ GB increases. We add four fermion interactions and show that in the presence of these corrections the main interesting features of the model are still present and that the intrinsic attractive interaction can not be switched off. This study suggests to find GB corrections to equation of state of holographic QCD matter.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Mark Van Raamsdonk

Abstract Certain closed-universe big-bang/big-crunch cosmological spacetimes may be obtained by analytic continuation from asymptotically AdS Euclidean wormholes, as emphasized by Maldacena and Maoz. We investigate how these Euclidean wormhole spacetimes and their associated cosmological physics might be described within the context of AdS/CFT. We point out that a holographic model for cosmology proposed recently in arXiv:1810.10601 can be understood as a specific example of this picture. Based on this example, we suggest key features that should be present in more general examples of this approach to cosmology. The basic picture is that we start with two non-interacting copies of a Euclidean holographic CFT associated with the asymptotic regions of the Euclidean wormhole and couple these to auxiliary degrees of freedom such that the original theories interact strongly in the IR but softly in the UV. The partition function for the full theory with the auxiliary degrees of freedom can be viewed as a product of partition functions for the original theories averaged over an ensemble of possible sources. The Lorentzian cosmological spacetime is encoded in a wavefunction of the universe that lives in the Hilbert space of the auxiliary degrees of freedom.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Peng Yang ◽  
Xin Li ◽  
Yu Tian

Abstract The instability of superfluids in optical lattice has been investigated using the holographic model. The static and steady flow solutions are numerically obtained from the static equations of motion and the solutions are described as Bloch waves with different Bloch wave vector k. Based on these Bloch waves, the instability is investigated at two levels. At the linear perturbation level, we show that there is a critical kc above which the superflow is unstable. At the fully nonlinear level, the intermediate state and final state of unstable superflow are identified through numerical simulation of the full equations of motion. The results show that during the time evolution, the unstable superflow will undergo a chaotic state with soliton generation. The system will settle down to a stable state with k < kc eventually, with a smaller current and a larger condensate.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
Chuan-Yin Xia ◽  
Zhang-Yu Nie ◽  
Hua-Bi Zeng ◽  
Yu Zhang

AbstractWe study the homogenous quenching processes in a holographic s + p model with reentrant phase transitions. We first realize the reentrant phase transition in the holographic model in probe limit and draw the phase diagram. Next, we compare the time evolution of the two condensates in two groups of numerical quenching experiments across the reentrant region, with different quenching speed as well as different width of the reentrant region, respectively. We also study the dynamical competition between the two orders in quenching processes from the normal phase to the superconductor phase.


Author(s):  
Izumi Tanaka

In this study, we addressed the influence of quantum singularity on the topological state. The quantum singularity creates the defect in the momentum space ubiquitously and leads to the phase transition for the topological material. The kinetic equation reveals that the defect generates an anomaly without the characteristic energy scale. In the holographic model, the three-dimensional dislocations map into the gravitational bulk as domain walls extending along the AdS radial direction from the boundary. The creation/annihilation of the domain wall causes the quantum phase transition by ’t Hooft anomaly generation and is controlled by the gauge field. In other words, the phase transition is realized by the anomaly inflow. This ’t Hooft anomaly is caused by a phase ambiguity of the ground state resulting from the singularity in parameter space. This singularity gives the basis for the boundary’s topological state with the Berry connection. ’t Hooft anomaly’s renormalization group invariance shows that the total Berry flux is conserved in the UV layer to the IR layer. Phase transition entails domain wall constitution, which generates the entropy from the non-universal form or quantum entropy correction.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Napat Poovuttikul ◽  
Aruna Rajagopal

Abstract Using the framework of higher-form global symmetries, we examine the regime of validity of force-free electrodynamics by evaluating the lifetime of the electric field operator, which is non-conserved due to screening effects. We focus on a holographic model which has the same global symmetry as that of low energy plasma and obtain the lifetime of (non-conserved) electric flux in a strong magnetic field regime. The lifetime is inversely correlated to the magnetic field strength and thus suppressed in the strong field regime.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Alex May ◽  
Petar Simidzija ◽  
Mark Van Raamsdonk

Abstract Using a holographic model, we study quantum field theories with a layer of one CFT surrounded by another CFT, on either a periodic or an infinite direction. We study the vacuum energy density in each CFT as a function of the central charges, the thickness of the layer(s), and the properties of the interfaces between the CFTs. The dual spacetimes in the holographic model include two regions separated by a dynamical interface with some tension. For two or more spatial dimensions, we find that a layer of CFT with more degrees of freedom than the surrounding one can have an anomalously large negative vacuum energy density for certain types of interfaces. The negative energy density (or null-energy density in the direction perpendicular to the interface) becomes arbitrarily large for fixed layer width when the tension of the bulk interface approaches a lower critical value. We argue that in cases where we have large negative energy density, we also have an anomalously high transition temperature to the high-temperature thermal state.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Alexander Avdoshkin ◽  
Rustem Sharipov

Abstract We consider a holographic model of strongly interacting plasma with a gravitational anomaly. In this model, we compute parity-odd responses of the system at finite temperature and chemical potential to external electromagnetic and gravitational fields. Working within the linearized fluid/gravity duality, we performed the calculation up to the third order in gradient expansion. Besides reproducing the chiral magnetic (CME) and vortical (CVE) effects we also obtain gradient corrections to the CME and CVE due to the gravitational anomaly. Additionally, we find energy-momentum and current responses to the gravitational field similarly determined by the gravitational anomaly. The energy-momentum response is the first purely gravitational transport effect that has been related to quantum anomalies in a holographic theory.


Sign in / Sign up

Export Citation Format

Share Document