scholarly journals A bound on energy extraction (and hairiness) from superradiance

2021 ◽  
pp. 136835
Author(s):  
Carlos A.R. Herdeiro ◽  
Eugen Radu ◽  
Nuno M. Santos
Keyword(s):  
2021 ◽  
pp. 0308518X2110266
Author(s):  
Neil Argent ◽  
Sean Markey ◽  
Greg Halseth ◽  
Laura Ryser ◽  
Fiona Haslam-McKenzie

This paper is concerned with the socio-spatial and ethical politics of redistribution, specifically the allocation of natural resources rents from political and economic cores to the economic and geographical peripheries whence the resource originated. Based on a case study of the coal seam gas sector in Queensland's Surat Basin, this paper focuses on the operation of the Queensland State Government's regional development fund for mining and energy extraction-affected regions. Employing an environmental justice framework, we critically explore the operation of these funds in ostensibly helping constituent communities in becoming resilient to the worst effects of the ‘staples trap’. Drawing on secondary demographic and housing data for the region, as well as primary information collected from key respondents from mid-2018 to early 2019, we show that funds were distributed across all of the local government areas, and allocated to projects and places primarily on a perceived economic needs basis. However, concerns were raised with the probity of the funds’ administration. In terms of recognition justice, the participation of smaller and more remote towns and local Indigenous communities was hampered by their structural marginalisation. Procedurally, the funds were criticised for the lack of local consultation taken in the development and approval of projects. While spatially concentrated expenditure may be the most cost-effective use of public monies, we argue that grant application processes should be open, transparent and inclusive, and the outcomes cognisant of the developmental needs of smaller communities, together with the need to foster regional solidarity and coherence.


2021 ◽  
Vol 228 ◽  
pp. 108901
Author(s):  
Xiao-Dong Bai ◽  
Ji-Sheng Zhang ◽  
Jin-Hai Zheng ◽  
Yong Wang

2021 ◽  
Vol 809 (1) ◽  
pp. 012001
Author(s):  
Hao Yang ◽  
Guanghua He ◽  
Weijie Mo ◽  
Wei Wang

Author(s):  
Christophe Cochet ◽  
Ronald W. Yeung

The wave-energy absorber being developed at UC Berkeley is modeled as a moored compound cylinder, with an outer cylinder sliding along a tension-tethered inner cylinder. With rigid-body dynamics, it is first shown that the surge and pitch degrees of freedom are decoupled from the heave motion. The heaving motion of the outer cylinder is analyzed and its geometric proportions (radii and drafts ratios) are optimized for wave-energy extraction. Earlier works of Yeung [1] and Chau and Yeung [2,3] are used in the present heave-motion study. The coupled surge-pitch motion can be solved and can provide the contact forces between the cylinders. The concept of capture width is used to characterize the energy extraction: its maximization leads to optimal energy extraction. The methodology presented provides the optimal geometry in terms of non-dimensional proportions of the device. It is found that a smaller radius and deeper draft for the outer cylinder will lead to a larger capture width and larger resulting motion.


Sign in / Sign up

Export Citation Format

Share Document