scholarly journals Finite element analysis to estimate burst pressure of mild steel pressure vessel using Ramberg–Osgood model

2016 ◽  
Vol 8 ◽  
pp. 733-735 ◽  
Author(s):  
Puneet Deolia ◽  
Firoz A. Shaikh
2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Nidhi Dwivedi ◽  
Veerendra Kumar ◽  
Ashwani Shrivastava ◽  
Raji Nareliya

The main objective of this paper is to review various types of methods, formulae, and theories used for the calculation of burst strength of pressure vessel. The pressure at which the pressure vessel should burst if all of the specified design tolerances are at their minimum values is called burst pressure. Prediction of burst strength is the very important aspect in the pressure vessel design to avoid any disaster. The present study mainly focuses on various types of factors which tremendously affect the burst strength of pressure vessel.


2017 ◽  
Vol 10 (25) ◽  
pp. 1-10
Author(s):  
Deepali Mathur ◽  
Mandar Sapre ◽  
Chintan Hingoo ◽  
◽  
◽  
...  

2009 ◽  
Vol 131 (4) ◽  
Author(s):  
H. F. Wang ◽  
Z. F. Sang ◽  
L. P. Xue ◽  
G. E. O. Widera

The burst pressure of cylinders with hillside nozzle is determined using both experimental and finite element analysis (FEA) approaches. Three full-scale test models with different angles of the hillside nozzle were designed and fabricated specifically for a hydrostatic test in which the cylinders were pressurized with water. 3D static nonlinear finite element simulations of the experimental models were performed to obtain the burst pressures. The burst pressure is defined as the internal pressure for which the structure approaches dimensional instability, i.e., unbounded strain for a small increment in pressure. Good agreement between the predicted and measured burst pressures shows that elastic-plastic finite element analysis is a viable option to estimate the burst pressure of the cylinders with hillside nozzles. The preliminary results also suggest that the failure location is near the longitudinal plane of the cylinder-nozzle intersection and that the burst pressure increases slightly with an increment in the angle of the hillside nozzle.


2021 ◽  
Vol 2 (2) ◽  
pp. 93-97
Author(s):  
Satriawan Dini Hariyanto ◽  
Wikan Kurniawan

Stress analysis of the bender components in the design of the begel fabricator machine was carried out using FEA (Finite Element Analysis) with three variations of the constituent material parameters, namely 6061 aluminum, mild steel, and cast iron with a modulus of elasticity of 68.9 GPa, 220 GPa, 120.5 GPa, respectively. The test is carried out by a loading parameter 2520 MPa and fixed constraint. The maximum von misses stress and displacement obtained for each material parameter components using aluminum, mild steel, and cast iron are 17.78 MPa; 0.00765, 17.49 MPa; 0.00229, 17.62 MPa; 0.00427 respectively.


Author(s):  
Y P Ravitej ◽  
V Swaroop ◽  
S Ramesh ◽  
H Adarsha ◽  
Veerachari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document