PtrHAT22, as a higher hierarchy regulator, coordinately regulates secondary cell wall component biosynthesis in Populus trichocarpa

Plant Science ◽  
2021 ◽  
pp. 111170
Author(s):  
Mengxuan Ren ◽  
Yang Zhang ◽  
Ruiqi Wang ◽  
Yingying Liu ◽  
Meiliang Li ◽  
...  
Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1002
Author(s):  
Shenquan Cao ◽  
Cong Wang ◽  
Huanhuan Ji ◽  
Mengjie Guo ◽  
Jiyao Cheng ◽  
...  

Secondary cell wall (SCW) deposition is an important process during wood formation. Although aspartic proteases (APs) have been reported to have regulatory roles in herbaceous plants, the involvement of atypical APs in SCW deposition in trees has not been reported. In this study, we characterised the Populus trichocarpa atypical AP gene PtAP66, which is involved in wood SCW deposition. Transcriptome data from the AspWood resource showed that in the secondary xylem of P. trichocarpa, PtAP66 transcripts increased from the vascular cambium to the xylem cell expansion region and maintained high levels in the SCW formation region. Fluorescent signals from transgenic Arabidopsis plant roots and transiently transformed P. trichocarpa leaf protoplasts strongly suggested that the PtAP66-fused fluorescent protein (PtAP66-GFP or PtAP66-YFP) localised in the plasma membrane. Compared with the wild-type plants, the Cas9/gRNA-induced PtAP66 mutants exhibited reduced SCW thickness of secondary xylem fibres, as suggested by the scanning electron microscopy (SEM) data. In addition, wood composition assays revealed that the cellulose content in the mutants decreased by 4.90–5.57%. Transcription analysis further showed that a loss of PtAP66 downregulated the expression of several SCW synthesis-related genes, including cellulose and hemicellulose synthesis enzyme-encoding genes. Altogether, these findings indicate that atypical PtAP66 plays an important role in SCW deposition during wood formation.


2019 ◽  
Vol 39 (7) ◽  
pp. 1187-1200 ◽  
Author(s):  
Bo Jiao ◽  
Xin Zhao ◽  
Wanxiang Lu ◽  
Li Guo ◽  
Keming Luo

Abstract Secondary cell wall (SCW) biosynthesis during wood formation in trees is controlled by a multilevel regulatory network that coordinates the expression of substantial genes. However, few transcription factors involved in the negative regulation of secondary wall biosynthesis have been characterized in tree species. In this study, we isolated an R2R3 MYB transcription factor MYB189 from Populus trichocarpa, which is expressed predominantly in secondary vascular tissues, especially in the xylem. A novel repression motif was identified in the C-terminal region of MYB189, which indicates this factor was a transcriptional repressor. Overexpression (OE) of MYB189 in Arabidopsis and poplar resulted in a significant reduction in the contents of lignin, cellulose and hemicelluloses. Vascular development in stems of MYB189 OE lines was markedly inhibited, leading to a dramatic decrease in SCW thickness of xylem fibers. Gene expression analyses showed that most of the structural genes involved in the biosynthesis of lignin, cellulose and xylans were significantly downregulated in MYB189-overexpressing poplars compared with the wild-type control. Chromatin immunoprecipitation-quantitative real-time polymerase chain reaction and transient expression assays revealed that MYB189 could directly bind to the promoters of secondary wall biosynthetic genes to repress their expression. Together, these data suggest that MYB189 acts as a repressor to regulate SCW biosynthesis in poplar.


Author(s):  
Wah Chiu ◽  
David Grano

The periodic structure external to the outer membrane of Spirillum serpens VHA has been isolated by similar procedures to those used by Buckmire and Murray (1). From SDS gel electrophoresis, we have found that the isolated fragments contain several protein components, and that the crystalline structure is composed of a glycoprotein component with a molecular weight of ∽ 140,000 daltons (2). Under an electron microscopic examination, we have visualized the hexagonally-packed glycoprotein subunits, as well as the bilayer profile of the outer membrane. In this paper, we will discuss some structural aspects of the crystalline glycoproteins, based on computer-reconstructed images of the external cell wall fragments.The specimens were prepared for electron microscopy in two ways: negatively stained with 1% PTA, and maintained in a frozen-hydrated state (3). The micrographs were taken with a JEM-100B electron microscope with a field emission gun. The minimum exposure technique was essential for imaging the frozen- hydrated specimens.


2021 ◽  
Vol 22 (7) ◽  
pp. 3560
Author(s):  
Ruixue Xiao ◽  
Chong Zhang ◽  
Xiaorui Guo ◽  
Hui Li ◽  
Hai Lu

The secondary wall is the main part of wood and is composed of cellulose, xylan, lignin, and small amounts of structural proteins and enzymes. Lignin molecules can interact directly or indirectly with cellulose, xylan and other polysaccharide molecules in the cell wall, increasing the mechanical strength and hydrophobicity of plant cells and tissues and facilitating the long-distance transportation of water in plants. MYBs (v-myb avian myeloblastosis viral oncogene homolog) belong to one of the largest superfamilies of transcription factors, the members of which regulate secondary cell-wall formation by promoting/inhibiting the biosynthesis of lignin, cellulose, and xylan. Among them, MYB46 and MYB83, which comprise the second layer of the main switch of secondary cell-wall biosynthesis, coordinate upstream and downstream secondary wall synthesis-related transcription factors. In addition, MYB transcription factors other than MYB46/83, as well as noncoding RNAs, hormones, and other factors, interact with one another to regulate the biosynthesis of the secondary wall. Here, we discuss the biosynthesis of secondary wall, classification and functions of MYB transcription factors and their regulation of lignin polymerization and secondary cell-wall formation during wood formation.


Sign in / Sign up

Export Citation Format

Share Document