Characterization and expression profiling of MYB transcription factors against stresses and during male organ development in Chinese cabbage (Brassica rapa ssp. pekinensis)

2016 ◽  
Vol 104 ◽  
pp. 200-215 ◽  
Author(s):  
Gopal Saha ◽  
Jong-In Park ◽  
Nasar Uddin Ahmed ◽  
Md Abdul Kayum ◽  
Kwon-Kyoo Kang ◽  
...  
Molecules ◽  
2013 ◽  
Vol 18 (7) ◽  
pp. 8682-8695 ◽  
Author(s):  
Yeon Kim ◽  
Xiaohua Li ◽  
Sun-Ju Kim ◽  
Haeng Kim ◽  
Jeongyeo Lee ◽  
...  

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yuan Yuan ◽  
Xiping Yang ◽  
Mengfan Feng ◽  
Hongyan Ding ◽  
Muhammad Tahir Khan ◽  
...  

Abstract Background Sugarcane (Saccharum) is the most critical sugar crop worldwide. As one of the most enriched transcription factor families in plants, MYB genes display a great potential to contribute to sugarcane improvement by trait modification. We have identified the sugarcane MYB gene family at a whole-genome level through systematic evolution analyses and expression profiling. R2R3-MYB is a large subfamily involved in many plant-specific processes. Results A total of 202 R2R3-MYB genes (356 alleles) were identified in the polyploid Saccharum spontaneum genomic sequence and classified into 15 subgroups by phylogenetic analysis. The sugarcane MYB family had more members by a comparative analysis in sorghum and significant advantages among most plants, especially grasses. Collinearity analysis revealed that 70% of the SsR2R3-MYB genes had experienced duplication events, logically suggesting the contributors to the MYB gene family expansion. Functional characterization was performed to identify 56 SsR2R3-MYB genes involved in various plant bioprocesses with expression profiling analysis on 60 RNA-seq databases. We identified 22 MYB genes specifically expressed in the stem, of which RT-qPCR validated MYB43, MYB53, MYB65, MYB78, and MYB99. Allelic expression dominance analysis implied the differential expression of alleles might be responsible for the high expression of MYB in the stem. MYB169, MYB181, MYB192 were identified as candidate C4 photosynthetic regulators by C4 expression pattern and robust circadian oscillations. Furthermore, stress expression analysis showed that MYB36, MYB48, MYB54, MYB61 actively responded to drought treatment; 19 and 10 MYB genes were involved in response to the sugarcane pokkah boeng and mosaic disease, respectively. Conclusions This is the first report on genome-wide analysis of the MYB gene family in sugarcane. SsMYBs probably played an essential role in stem development and the adaptation of various stress conditions. The results will provide detailed insights and rich resources to understand the functional diversity of MYB transcription factors and facilitate the breeding of essential traits in sugarcane.


Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 807
Author(s):  
Shipra Kumari ◽  
Jung Su Jo ◽  
Hyo Seon Choi ◽  
Jun Gu Lee ◽  
Soo In Lee ◽  
...  

Chinese cabbage (Brassica rapa) is a perennial crucifer vegetable that has long been used for forage. Crucifers are rich sources of glucosinolates (GSLs), which are anti-carcinogenic in humans and involved in plant defense responses. Myeloblastosis (MYB) proteins are a large family of transcription factors (TFs) in plants and play major regulatory roles in many biological processes. We identified 14 functional R2R3-MYB genes involved in glucosinolate biosynthesis in B. rapa ssp. pekinensis. Bioinformatic analysis of their phylogeny, protein motifs, gene interaction network, and molecular characteristics showed that Chinese cabbage MYB genes are comparable to those of Arabidopsis thaliana. The expression levels of the 14 BrMYB genes under fluorescent lamp, blue, and red light were quantitated using qRT-PCR analysis. Almost all of the R2R3-BrMYBs were upregulated and expressed more under red light than under fluorescent lamp or blue light, except BrMYB34s. We also calculated the total GSLs under each light condition. The total GSL content was higher under red light than under fluorescent lamp or blue light. Furthermore, the individual glucosinolates, comprised of four aliphatic GSLs (progoitrin, sinigrin, gluconapin, and glucobrassicanapin) and one indolic GSL (glucobrassicin), were higher under red light than the other light conditions. The relationships between light quality and glucosinolate biosynthesis require further investigation.


Sign in / Sign up

Export Citation Format

Share Document