scholarly journals Molecular Characterization and Expression Analysis of MYB Transcription Factors Involved in the Glucosinolate Pathway in Chinese Cabbage (Brassica rapa ssp. pekinensis)

Agronomy ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 807
Author(s):  
Shipra Kumari ◽  
Jung Su Jo ◽  
Hyo Seon Choi ◽  
Jun Gu Lee ◽  
Soo In Lee ◽  
...  

Chinese cabbage (Brassica rapa) is a perennial crucifer vegetable that has long been used for forage. Crucifers are rich sources of glucosinolates (GSLs), which are anti-carcinogenic in humans and involved in plant defense responses. Myeloblastosis (MYB) proteins are a large family of transcription factors (TFs) in plants and play major regulatory roles in many biological processes. We identified 14 functional R2R3-MYB genes involved in glucosinolate biosynthesis in B. rapa ssp. pekinensis. Bioinformatic analysis of their phylogeny, protein motifs, gene interaction network, and molecular characteristics showed that Chinese cabbage MYB genes are comparable to those of Arabidopsis thaliana. The expression levels of the 14 BrMYB genes under fluorescent lamp, blue, and red light were quantitated using qRT-PCR analysis. Almost all of the R2R3-BrMYBs were upregulated and expressed more under red light than under fluorescent lamp or blue light, except BrMYB34s. We also calculated the total GSLs under each light condition. The total GSL content was higher under red light than under fluorescent lamp or blue light. Furthermore, the individual glucosinolates, comprised of four aliphatic GSLs (progoitrin, sinigrin, gluconapin, and glucobrassicanapin) and one indolic GSL (glucobrassicin), were higher under red light than the other light conditions. The relationships between light quality and glucosinolate biosynthesis require further investigation.

Molecules ◽  
2013 ◽  
Vol 18 (7) ◽  
pp. 8682-8695 ◽  
Author(s):  
Yeon Kim ◽  
Xiaohua Li ◽  
Sun-Ju Kim ◽  
Haeng Kim ◽  
Jeongyeo Lee ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Gilor Kelly ◽  
Danja Brandsma ◽  
Aiman Egbaria ◽  
Ofer Stein ◽  
Adi Doron-Faigenboim ◽  
...  

AbstractThe hypocotyls of germinating seedlings elongate in a search for light to enable autotrophic sugar production. Upon exposure to light, photoreceptors that are activated by blue and red light halt elongation by preventing the degradation of the hypocotyl-elongation inhibitor HY5 and by inhibiting the activity of the elongation-promoting transcription factors PIFs. The question of how sugar affects hypocotyl elongation and which cell types stimulate and stop that elongation remains unresolved. We found that overexpression of a sugar sensor, Arabidopsis hexokinase 1 (HXK1), in guard cells promotes hypocotyl elongation under white and blue light through PIF4. Furthermore, expression of PIF4 in guard cells is sufficient to promote hypocotyl elongation in the light, while expression of HY5 in guard cells is sufficient to inhibit the elongation of the hy5 mutant and the elongation stimulated by HXK1. HY5 exits the guard cells and inhibits hypocotyl elongation, but is degraded in the dark. We also show that the inhibition of hypocotyl elongation by guard cells’ HY5 involves auto-activation of HY5 expression in other tissues. It appears that guard cells are capable of coordinating hypocotyl elongation and that sugar and HXK1 have the opposite effect of light on hypocotyl elongation, converging at PIF4.


2014 ◽  
Vol 9 (11) ◽  
pp. e976158
Author(s):  
Yihai Wang ◽  
Kevin M Folta
Keyword(s):  

Agriculture ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 244
Author(s):  
Seung Hee Eom ◽  
Tae Kyung Hyun

Histone deacetylases (HDACs) are known as erasers that remove acetyl groups from lysine residues in histones. Although plant HDACs play essential roles in physiological processes, including various stress responses, our knowledge concerning HDAC gene families and their evolutionary relationship remains limited. In Brassica rapa genome, we identified 20 HDAC genes, which are divided into three major groups: RPD3/HDA1, HD2, and SIR2 families. In addition, seven pairs of segmental duplicated paralogs and one pair of tandem duplicated paralogs were identified in the B. rapa HDAC (BraHDAC) family, indicating that segmental duplication is predominant for the expansion of the BraHDAC genes. The expression patterns of paralogous gene pairs suggest a divergence in the function of BraHDACs under various stress conditions. Furthermore, we suggested that BraHDA3 (homologous of Arabidopsis HDA14) encodes the functional HDAC enzyme, which can be inhibited by Class I/II HDAC inhibitor SAHA. As a first step toward understanding the epigenetic responses to environmental stresses in Chinese cabbage, our results provide a solid foundation for functional analysis of the BraHDAC family.


Sign in / Sign up

Export Citation Format

Share Document