scholarly journals Application of atom probe tomography in understanding high entropy alloys: 3D local chemical compositions in atomic scale analysis

2020 ◽  
pp. 100740
Author(s):  
Rong Hu ◽  
Shenbao Jin ◽  
Gang Sha
2021 ◽  
pp. 1-11
Author(s):  
Baptiste Gault ◽  
Benjamin Klaes ◽  
Felipe F. Morgado ◽  
Christoph Freysoldt ◽  
Yue Li ◽  
...  

Atom probe tomography (APT) is often introduced as providing “atomic-scale” mapping of the composition of materials and as such is often exploited to analyze atomic neighborhoods within a material. Yet quantifying the actual spatial performance of the technique in a general case remains challenging, as it depends on the material system being investigated as well as on the specimen's geometry. Here, by using comparisons with field-ion microscopy experiments, field-ion imaging and field evaporation simulations, we provide the basis for a critical reflection on the spatial performance of APT in the analysis of pure metals, low alloyed systems and concentrated solid solutions (i.e., akin to high-entropy alloys). The spatial resolution imposes strong limitations on the possible interpretation of measured atomic neighborhoods, and directional neighborhood analyses restricted to the depth are expected to be more robust. We hope this work gets the community to reflect on its practices, in the same way, it got us to reflect on our work.


2016 ◽  
Vol 22 (S3) ◽  
pp. 1534-1535
Author(s):  
Isabelle Martin ◽  
Robert Estivill ◽  
Marc Juhel ◽  
Adeline Grenier ◽  
Ty J. Prosa ◽  
...  

2013 ◽  
Vol 61 (12) ◽  
pp. 4696-4706 ◽  
Author(s):  
K.G. Pradeep ◽  
N. Wanderka ◽  
P. Choi ◽  
J. Banhart ◽  
B.S. Murty ◽  
...  

2004 ◽  
Vol 10 (S02) ◽  
pp. 512-513 ◽  
Author(s):  
K R Kuhlman ◽  
T F Kelly ◽  
M K Miller

Extended abstract of a paper presented at Microscopy and Microanalysis 2004 in Savannah, Georgia, USA, August 1–5, 2004.


2020 ◽  
Vol 6 (49) ◽  
pp. eabd6324
Author(s):  
A. A. El-Zoka ◽  
S.-H. Kim ◽  
S. Deville ◽  
R. C. Newman ◽  
L. T. Stephenson ◽  
...  

Transmission electron microscopy went through a revolution enabling routine cryo-imaging of biological and (bio)chemical systems, in liquid form. Yet, these approaches typically lack advanced analytical capabilities. Here, we used atom probe tomography to analyze frozen liquids in three dimensions with subnanometer resolution. We introduce a specimen preparation strategy using nanoporous gold. We report data on 2- to 3-μm-thick layers of ice formed from both high-purity deuterated water and a solution of 50 mM NaCl in high-purity deuterated water. The analysis of the gold-ice interface reveals a substantial increase in the solute concentrations across the interface. We explore a range of experimental parameters to show that atom probe analyses of bulk aqueous specimens come with their own challenges and discuss physical processes that produce the observed phenomena. Our study demonstrates the viability of using frozen water as a carrier for near-atomic–scale analysis of objects in solution by atom probe tomography.


Sign in / Sign up

Export Citation Format

Share Document