Elevated basal transcription can underlie timothy channel association with autism related disorders

2020 ◽  
Vol 191 ◽  
pp. 101820
Author(s):  
Evrim Servili ◽  
Michael Trus ◽  
Julia Sajman ◽  
Eilon Sherman ◽  
Daphne Atlas
Keyword(s):  
2008 ◽  
Vol 29 (2) ◽  
pp. 271-278 ◽  
Author(s):  
Christian Kroun Damgaard ◽  
Søren Kahns ◽  
Søren Lykke-Andersen ◽  
Anders Lade Nielsen ◽  
Torben Heick Jensen ◽  
...  

1997 ◽  
Vol 11 (13) ◽  
pp. 2025-2037 ◽  
Author(s):  
Hui Li ◽  
Christopher Leo ◽  
Daniel J. Schroen ◽  
J. Don Chen

Abstract SMRT (silencing mediator of retinoic acid and thyroid hormone receptor) and N-CoR (nuclear receptor corepressor) are two related transcriptional corepressors that contain separable domains capable of interacting with unliganded nuclear receptors and repressing basal transcription. To decipher the mechanisms of receptor interaction and transcriptional repression by SMRT/N-CoR, we have characterized protein-protein interacting surfaces between SMRT and nuclear receptors and defined transcriptional repression domains of both SMRT and N-CoR. Deletional analysis reveals two individual nuclear receptor domains necessary for stable association with SMRT and a C-terminal helix essential for corepressor dissociation. Coordinately, two SMRT domains are found to interact independently with the receptors. Functional analysis reveals that SMRT contains two distinct repression domains, and the corresponding regions in N-CoR also repress basal transcription. Both repression domains in SMRT and N-CoR interact weakly with mSin3A, which in turn associates with a histone deacetylase HDAC1 in a mammalian two-hybrid assay. Far-Western analysis demonstrates a direct protein-protein interaction between two N-CoR repression domains with mSin3A. Finally we demonstrate that overexpression of full-length SMRT further represses basal transcription from natural promoters. Together, these results support a role of SMRT/N-CoR in corepression through the utilization of multiple mechanisms for receptor interactions and transcriptional repression.


1995 ◽  
Vol 23 (20) ◽  
pp. 4050-4054 ◽  
Author(s):  
Masatomo Yonaha ◽  
Taku Chibazakura ◽  
Shigetaka Kitajima ◽  
Yukio Yasukochi

2004 ◽  
Vol 378 (2) ◽  
pp. 473-484 ◽  
Author(s):  
Stephan RYSER ◽  
Abbas MASSIHA ◽  
Isabelle PIUZ ◽  
Werner SCHLEGEL

Mitogen-activated protein kinases (MAPKs) are inactivated by a dual specificity phosphatase, MAPK phosphatase-1 (MKP-1). MKP-1 is transcribed as an immediate early response gene (IEG) following various stimuli. In the pituitary cell line GH4C1, MKP-1 gene transcription is strongly induced by thyrotropin-releasing hormone (TRH) as well as by epidermal growth factor (EGF) as a consequence of activated MAPK/extracellular-signal-regulated kinase (ERK) signalling. Intriguingly, reporter gene analysis with the MKP-1 promoter showed strong basal transcription, but only limited induction by TRH and EGF. Site-directed mutagenesis of the reporter construct combined with band-shift and in vivo studies revealed that part of the constitutive activity of the MKP-1 promoter resides in two GC boxes bound by Sp1 and Sp3 transcription factors in the minimal promoter. Basal transcription of transiently transfected luciferase reporter can be initiated by either of the two GC boxes or also by either of the two cAMP/Ca2+ responsive elements or by the E-box present in the proximal promoter. On the other hand, when analysed by stable transfection, the five responsive elements are acting in synergy to transactivate the MKP-1 proximal promoter. We show in this study that the MKP-1 promoter can function as a constitutive promoter or as a rapid and transient sensor for the activation state of MAPKs/ERKs. This dual mode of transcription initiation may have different consequences for the control of a block to elongation situated in the first exon of the MKP-1 gene, as described previously [Ryser, Tortola, van Haasteren, Muda, Li and Schlegel (2001) J. Biol. Chem. 276, 33319–33327].


Sign in / Sign up

Export Citation Format

Share Document