scholarly journals Stimulated initiation of mitogen-activated protein kinase phosphatase-1 (MKP-1) gene transcription involves the synergistic action of multiple cis-acting elements in the proximal promoter

2004 ◽  
Vol 378 (2) ◽  
pp. 473-484 ◽  
Author(s):  
Stephan RYSER ◽  
Abbas MASSIHA ◽  
Isabelle PIUZ ◽  
Werner SCHLEGEL

Mitogen-activated protein kinases (MAPKs) are inactivated by a dual specificity phosphatase, MAPK phosphatase-1 (MKP-1). MKP-1 is transcribed as an immediate early response gene (IEG) following various stimuli. In the pituitary cell line GH4C1, MKP-1 gene transcription is strongly induced by thyrotropin-releasing hormone (TRH) as well as by epidermal growth factor (EGF) as a consequence of activated MAPK/extracellular-signal-regulated kinase (ERK) signalling. Intriguingly, reporter gene analysis with the MKP-1 promoter showed strong basal transcription, but only limited induction by TRH and EGF. Site-directed mutagenesis of the reporter construct combined with band-shift and in vivo studies revealed that part of the constitutive activity of the MKP-1 promoter resides in two GC boxes bound by Sp1 and Sp3 transcription factors in the minimal promoter. Basal transcription of transiently transfected luciferase reporter can be initiated by either of the two GC boxes or also by either of the two cAMP/Ca2+ responsive elements or by the E-box present in the proximal promoter. On the other hand, when analysed by stable transfection, the five responsive elements are acting in synergy to transactivate the MKP-1 proximal promoter. We show in this study that the MKP-1 promoter can function as a constitutive promoter or as a rapid and transient sensor for the activation state of MAPKs/ERKs. This dual mode of transcription initiation may have different consequences for the control of a block to elongation situated in the first exon of the MKP-1 gene, as described previously [Ryser, Tortola, van Haasteren, Muda, Li and Schlegel (2001) J. Biol. Chem. 276, 33319–33327].

2019 ◽  
Vol 31 (10) ◽  
pp. 1616
Author(s):  
Yu Lian ◽  
Yu Hu ◽  
Lu Gan ◽  
Yuan-Nan Huo ◽  
Hong-Yan Luo ◽  
...  

As an important gram-negative bacterial outer membrane component, lipopolysaccharide (LPS) plays an important role in bacterial-induced endometritis in sows. However, how LPS induces endometritis is unclear. We stimulated sow endometrial epithelial cells (EECs) with LPS and detected cell viability and tumour necrosis factor-α (TNF-α) and interleukin-1 (IL-1) secretion. LPS affected EEC viability and TNF-α and IL-1 secretion in a dose-dependent manner. LPS induced differential expression in 10 of 393 miRNAs in the EECs (downregulated, nine; upregulated, one). MicroRNA (miRNA) high-throughput sequencing of the LPS-induced EECs plus bioinformatics analysis and the dual-luciferase reporter system revealed a novel miRNA target gene: mitogen-activated protein kinase kinase kinase 14 (MAP3K14). Ssc-novel-miR-106-5p mimic, inhibitor and the nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) phosphorylation inhibitor Bay11–7085 were used to detect EEC nuclear factor-κB phosphorylation levels (p-NF-κB) and TNF-α and IL-1 secretion. MiR-106-5p mimic downregulated MAP3K14 mRNA and protein expression levels, inhibited p-NF-κB levels and decreased IL-1 and TNF-α secretion, whereas miR-106-5p inhibitor had the opposite effect. Bay11–7085 inhibited p-NF-κB expression and TNF-α and IL-1 secretion. These results suggest that LPS downregulates ssc-novel-miR-106-5p expression in sow EECs to increase MAP3K14 expression, which increases p-NF-κB to promote IL-1 and TNF-α secretion.


Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 217 ◽  
Author(s):  
Na Zhang ◽  
Tinghui Jiang ◽  
Yitao Wang ◽  
Lanyue Hu ◽  
Youquan Bu

BTG4 is the last cloned and poorly studied member of BTG/Tob family. Studies have suggested that BTG4 is critical for the degradation of maternal mRNAs in mice during the process of maternal-to-zygotic transition, and downregulated in cancers, such as gastric cancer. However, the regulatory mechanism of BTG4 and its function in cancers remain elusive. In this study, we have for the first time identified the promoter region of the human BTG4 gene. Serial luciferase reporter assay demonstrated that the core promoter of BTG4 is mainly located within the 388 bp region near its transcription initiation site. Transcription factor binding site analysis revealed that the BTG4 promoter contains binding sites for canonical transcription factors, such as Sp1, whereas its first intron contains two overlapped consensus p53 binding sites. However, overexpression of Sp1 has negligible effects on BTG4 promoter activity, and site-directed mutagenesis assay further suggested that Sp1 is not a critical transcription factor for the transcriptional regulation of BTG4. Of note, luciferase assay revealed that one of the intronic p53 binding sites is highly responsive to p53. Both exogenous p53 overexpression and adriamycin-mediated endogenous p53 activation result in the transcriptional upregulation of BTG4. In addition, BTG4 is downregulated in lung and colorectal cancers, and overexpression of BTG4 inhibits cell growth and induces apoptosis in cancer cells. Taken together, our results strongly suggest that BTG4 is a novel p53-regulated gene and probably functions as a tumor suppressor in lung and colorectal cancers.


Blood ◽  
1998 ◽  
Vol 92 (11) ◽  
pp. 4138-4149
Author(s):  
Gyeong H. Park ◽  
Howard K. Plummer ◽  
Geoffrey W. Krystal

The receptor tyrosine kinase c-kit is necessary for normal hematopoiesis, the development of germ cells and melanocytes, and the pathogenesis of certain hematologic and nonhematologic malignancies. To better understand the regulation of the c-kit gene, a detailed analysis of the core promoter was performed. Rapid amplification of cDNA ends (RACE) and RNase protection methods showed two major transcriptional initiation sites. Luciferase reporter assays using 5′ promoter deletion-reporter constructs containing up to 3 kb of 5′ sequence were performed in hematopoietic and small-cell lung cancer cell lines which either did or did not express the endogenous c-kit gene. This analysis showed the region 83 to 124 bp upstream of the 5′ transcription initiation site was crucial for maximal core promoter activity. Sequence analysis showed several potential Sp1 binding sites within this highly GC-rich region. Gel shift and DNase footprinting showed that Sp1 selectively bound to a single site within this region. Supershift studies using an anti-Sp1 antibody confirmed specific Sp1 binding. Site-directed mutagenesis of the −93/−84 Sp1 binding site reduced promoter-reporter activity to basal levels in c-kit–expressing cells. Cotransfection into DrosophilaSL2 cells of a c-kit promoter-reporter construct with an Sp1 expression vector showed an Sp1 dose-dependent enhancement of expression that was markedly attenuated by mutation of the −93/−84 site. These results indicate that despite the fact that the human c-kit promoter contains multiple potential Sp1 sites, Sp1 binding is a selective process that is essential for core promoter activity.


2017 ◽  
Vol 43 (4) ◽  
pp. 1325-1336 ◽  
Author(s):  
Junyi  Wang ◽  
Haiou Yang ◽  
Yiran Si ◽  
Dongzhi Hu ◽  
Yang Yu ◽  
...  

Background/Aims: Iodine may trigger tumorigenesis and development of thyroid carcinoma, but the mechanisms involved remained elusive. MicroRNA (MiRNAs) are known to be involved in each stage of cancer development; however, the role of miRNAs in iodine-induced tumorigenesis of thyroid carcinoma remained unknown. In this study, we aimed at investigating miRNA related signaling pathway in thyroid cancer cells. Methods: Levels of miRNAs and mRNAs were determined using RT-qPCR and proteins were quantified by western blotting. Cell migration and proliferation were checked using Transwell assay and CCK8 assay respectively. Tumor xenografts in nude mice were established by subcutaneous injection of cancer cells. Results: Mitogen activated protein kinase 1 (MAPK1) was significantly up-regulated, while miR-422a was down-regulated in thyroid cancer cells cultured with high iodine; miR-422a directly bound to the 3’UTR of MAPK1 mRNA. Moreover, miR-422a negatively regulated MAPK1 expression, and down-regulated miR-422a promoted proliferation and migration of TPC-1 cells. In vivo studies also confirmed that iodine promoted tumor growth by suppressing miR-422a and up-regulating MAPK1. Conclusions: Our study illustrates a new pathway comprising iodine, miRNA and MAPK1, and defines a novel mechanism in thyroid cancer.


2002 ◽  
Vol 367 (3) ◽  
pp. 577-585 ◽  
Author(s):  
Carolyn WILTSHIRE ◽  
Masato MATSUSHITA ◽  
Satoshi TSUKADA ◽  
David A.F. GILLESPIE ◽  
Gerhard H.W. MAY

We have identified a novel c-Jun N-terminal kinase (JNK)-interacting protein, Sab, by yeast two-hybrid screening. Sab binds to and serves as a substrate for JNK in vitro, and was previously found to interact with the Src homology 3 (SH3) domain of Bruton's tyrosine kinase (Btk). Inspection of the sequence of Sab reveals the presence of two putative mitogen-activated protein kinase interaction motifs (KIMs) similar to that found in the JNK docking domain of the c-Jun transcription factor, and four potential serine—proline JNK phosphorylation sites in the C-terminal half of the molecule. Using deletion and site-directed mutagenesis, we demonstrate that the most N-terminal KIM in Sab is essential for JNK binding, and that, as with c-Jun, physical interaction with JNK is necessary for Sab phosphorylation. Interestingly, confocal immunocytochemistry and cell fractionation studies indicate that Sab is associated with mitochondria, where it co-localizes with a fraction of active JNK. These and previously reported properties of Sab suggest a possible role in targeting JNK to this subcellular compartment and/or mediating cross-talk between the Btk and JNK signal transduction pathways.


2004 ◽  
Vol 33 (1) ◽  
pp. 263-280 ◽  
Author(s):  
JE Ayala ◽  
JN Boustead ◽  
SC Chapman ◽  
CA Svitek ◽  
JK Oeser ◽  
...  

The initial stages of diabetic nephropathy are characterized, in part, by expansion of the mesangial matrix and thickening of the glomerular basement membrane which are caused by increased extracellular matrix (ECM) protein synthesis and reduced degradation, a consequence of decreased matrix metalloproteinase (MMP) activity. These changes have been largely attributed to the effects of hyperglycemia such that the potential contribution of impaired insulin action to alterations in the ECM have not been studied in detail. We have shown here that insulin stimulates collagenase-1 fusion gene transcription in the MES 13 mesangial-derived cell line. Multiple collagenase-1 promoter elements are required for the full stimulatory effect of insulin but the action of insulin appears to be mediated through an activator protein-1 (AP-1) motif. Thus, mutation of this AP-1 motif abolishes insulin-stimulated collagenase fusion gene transcription and, in isolation, this AP-1 motif can mediate a stimulatory effect of insulin on the expression of a heterologous fusion gene. This suggested that the other collagenase-1 promoter elements that are required for the full stimulatory effect of insulin probably bind accessory factors that enhance the effect of insulin mediated through the AP-1 motif. In MES 13 cells, the AP-1 motif is bound by Fra-1, Fra-2, Jun B and Jun D. Stimulation of collagenase-1 fusion gene transcription by insulin requires activation of the mitogen-activated protein kinase (MEK) pathway since inhibition of MEK-1 and -2 blocks this effect. The potential significance of these observations with respect to a role for insulin in the pathophysiology of diabetic glomerulosclerosis is discussed.


2014 ◽  
Vol 35 (5) ◽  
pp. 778-788 ◽  
Author(s):  
Ze-Yan Zhang ◽  
Shang-Ze Li ◽  
Hui-Hui Zhang ◽  
Qu-Ran Wu ◽  
Jun Gong ◽  
...  

Interleukin-1β (IL-1β) is a key proinflammatory cytokine that initiates several signaling cascades, including those involving CCAAT/enhancer binding proteins (C/EBPs). The mechanism by which IL-1β propagates a signal that activates C/EBP has remained elusive. Nemo-like kinase (NLK) is a mitogen-activated protein kinase (MAPK)-like kinase associated with many pathways and phenotypes that are not yet well understood. Using a luciferase reporter screen, we found that IL-1β-induced C/EBP activation was positively regulated by NLK. Overexpression of NLK activated C/EBP and potentiated IL-1β-triggered C/EBP activation, whereas knockdown or knockout of NLK had the opposite effect. NLK interacted with activating transcription factor 5 (ATF5) and inhibited the proteasome-dependent degradation of ATF5 in a kinase-independent manner. Consistently, NLK deficiency resulted in decreased levels of ATF5. NLK cooperated with ATF5 to activate C/EBP, whereas NLK could not activate C/EBP upon knockdown of ATF5. Moreover, TAK1, a downstream effector of IL-1β that acts upstream of NLK, mimicked the ability of NLK to stabilize ATF5 and activate C/EBP. Thus, our findings reveal the TAK1-NLK pathway as a novel regulator of basal or IL-1β-triggered C/EBP activation though stabilization of ATF5.


Author(s):  
Hui Sun ◽  
Junwei Zhai ◽  
Li Zhang ◽  
Yingnan Chen

IntroductionEmerging evidence suggests that circular RNAs (circRNAs) play critical roles in tumorigenesis. However, the roles and molecular mechanisms of circRNA leucine-rich repeat immunoglobulin domain-containing protein 3 (circ_LRIG3) in hepatocellular carcinoma (HCC) has not been investigated.Material and methodsThe expression levels of circ_LRIG3, miR-223-3p, and mitogen-activated protein kinase kinase 6 (MAP2K6) were determined by qRT-PCR. Flow cytometry was applied to determine the cell cycle distribution and apoptosis. Cell proliferation, migration and invasion were assessed by MTT, colony formation, and transwell assays. Western blot assay was employed to measure the protein levels of the snail, E-cadherin, MAP2K6, mitogen-activated protein kinase (MAPK), phospho-MAPK (p-MAPK), extracellular signal-regulated kinases (ERKs), and phospho-ERKs (p- ERKs). The relationship between miR-223-3p and circ_LRIG3 or MAP2K6 was predicted by bioinformatics tools and verified by dual-luciferase reporter assay. A xenograft tumor model was established to confirm the functions of circ_LRIG3 in vivo.ResultsCirc_LRIG3 and MAP2K6 expression were enhanced while miR-223-3p abundance was reduced in HCC tissues and cells. Knockdown of circ_LRIG3 inhibited cell proliferation, metastasis, and increasing apoptosis. MiR-223-3p was a target of circ_LRIG3, and its downregulation reversed the inhibitory effect of circ_LRIG3 knockdown on the progression of HCC cells. Moreover, MAP2K6 could bind to miR-223-3p, and MAP2K6 upregulation also abolished the suppressive impact of circ_LRIG3 interference on progression of HCC cells. Additionally, the silence of circ_LRIG3 suppressed the activation of the MAPK/ERK pathway and tumor growth by upregulating miR-223-3p and downregulating MAP2K6.ConclusionsCirc_LRIG3 knockdown inhibited HCC progression through regulating miR-223-3p/MAP2K6 axis and inactivating MAPK/ERK pathway.


2005 ◽  
Vol 385 (2) ◽  
pp. 613-623 ◽  
Author(s):  
Joseph P. STAINS ◽  
Fernando LECANDA ◽  
Dwight A. TOWLER ◽  
Roberto CIVITELLI

HnRNP K (heterogeneous nuclear ribonucleoprotein K) was biochemically purified from a screen of proteins co-purifying with binding activity to the osteocalcin promoter. We identify hnRNP K as a novel repressor of osteocalcin gene transcription. Overexpression of hnRNP K lowers the expression of osteocalcin mRNA by 5-fold. Furthermore, luciferase reporter assays demonstrate that overexpression of hnRNP K represses osteocalcin transcription from a CT (cytosine/thymidine)-rich element in the proximal promoter. Electrophoretic mobility-shift analysis reveals that recombinant hnRNP K binds to the CT-rich element, but binds ss (single-stranded), rather than ds (double-stranded) oligonucleotide probes. Accordingly, hnRNP K antibody can supershift a binding activity present in nuclear extracts using ss sense, but not antisense or ds oligonucleotides corresponding to the CT-rich −95 to −47 osteocalcin promoter. Importantly, addition of recombinant hnRNP K to ROS 17/2.8 nuclear extract disrupts formation of a DNA–protein complex on ds CT element oligonucleotides. This action is mutually exclusive with hnRNP K's ability to bind ss DNA. These results demonstrate that hnRNPK, although co-purified with a dsDNA-binding activity, does not itself bind dsDNA. Rather, hnRNP K represses osteocalcin gene transcription by inhibiting the formation of a transcriptional complex on the CT element of the osteocalcin promoter.


Sign in / Sign up

Export Citation Format

Share Document