basal transcription factors
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 5)

H-INDEX

23
(FIVE YEARS 0)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Rafal Donczew ◽  
Steven Hahn

Human bromodomain-containing BET family members are promising targets for therapy of cancer and immunoinflammatory diseases, but their mechanisms of action and functional redundancies are poorly understood. Bdf1/2, yeast homologues of the human BET factors, were previously proposed to target transcription factor TFIID to acetylated histone H4, analogous to bromodomains that are present within the largest subunit of metazoan TFIID. We investigated the genome-wide roles of Bdf1/2 and found that their important contributions to transcription extend beyond TFIID function, as transcription of many genes is more sensitive to Bdf1/2 than to TFIID depletion. Bdf1/2 co-occupy the majority of yeast promoters and affect preinitiation complex formation through recruitment of TFIID, Mediator and basal transcription factors to chromatin. Surprisingly, we discovered that hypersensitivity of genes to Bdf1/2 depletion results from combined defects in transcription initiation and early elongation, a striking functional similarity to human BET proteins, most notably Brd4. Our results establish Bdf1/2 as critical for yeast transcription and provide important mechanistic insights into the function of BET proteins in all eukaryotes.


2021 ◽  
Author(s):  
Rafal Donczew ◽  
Steven Hahn

Human bromodomain-containing BET family members are promising targets for therapy of cancer and immunoinflammatory diseases, but their mechanisms of action and functional redundancies are poorly understood. Bdf1/2, yeast homologues of the human BET factors, were previously proposed to target transcription factor TFIID to acetylated histone H4, analogous to bromodomains that are present within the largest subunit of metazoan TFIID. We investigated the genome-wide roles of Bdf1/2 and found that their important contributions to transcription extend beyond TFIID function, as transcription of many genes is more sensitive to Bdf1/2 than to TFIID depletion. Bdf1/2 co-occupy the majority of yeast promoters and affect preinitiation complex formation through recruitment of TFIID, Mediator and basal transcription factors to chromatin. Surprisingly, we discovered that hypersensitivity of genes to Bdf1/2 depletion results from combined defects in transcription initiation and processive elongation, a striking functional similarity to human BET proteins, most notably Brd4. Our results establish Bdf1/2 as critical for yeast transcription and provide important mechanistic insights into the function of BET proteins in all eukaryotes.


2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Yide Su ◽  
Wenju Shao ◽  
Aili Zhang ◽  
Weiwei Zhang

ABSTRACT Improving yeast tolerance toward isobutanol is a critical issue enabling high-titer industrial production. Here, we used EMS mutagenesis to screen Saccharomyces cerevisiae with greater tolerance toward isobutanol. By this method, we obtained EMS39 with high-viability in medium containing 16 g/L isobutanol. Then, we metabolically engineered isobutanol synthesis in EMS39. About 2μ plasmids carrying PGK1p-ILV2, PGK1p-ILV3 and TDH3p-cox4-ARO10 were used to over-express ILV2, ILV3 and ARO10 genes, respectively, in EMS39 and wild type W303-1A. And the resulting strains were designated as EMS39-20 and W303-1A-20. Our results showed that EMS39-20 increased isobutanol titers by 49.9% compared to W303-1A-20. Whole genome resequencing analysis of EMS39 showed that more than 59 genes had mutations in their open reading frames or regulatory regions. These 59 genes are enriched mainly into cell growth, basal transcription factors, cell integrity signaling, translation initiation and elongation, ribosome assembly and function, oxidative stress response, etc. Additionally, transcriptomic analysis of EMS39-20 was carried out. Finally, reverse engineering tests showed that overexpression of CWP2 and SRP4039 could improve tolerance of S.cerevisiae toward isobutanol. In conclusion, EMS mutagenesis could be used to increase yeast tolerance toward isobutanol. Our study supplied new insights into mechanisms of tolerance toward isobutanol and enhancing isobutanol production in S. cerevisiae.


2020 ◽  
Author(s):  
Konstantin Brodolin ◽  
Zakia Morichaud

ABSTRACTThe basal transcription factors of cellular RNA polymerases (RNAPs) stimulate the initial RNA synthesis via poorly understood mechanisms. Here, we explored the mechanism employed by the bacterial factor σ in promoter-independent initial transcription. We found that the RNAP holoenzyme lacking the promoter-binding domain σ4 is ineffective in de novo transcription initiation and displays high propensity to pausing upon extension of RNAs 3 to 7 nucleotides in length. The σ4 domain stabilizes short RNA:DNA hybrids and suppresses pausing by stimulating RNAP active-center translocation. The anti-pausing activity of σ4 is modulated by its interaction with the β subunit flap domain and by the σ remodeling factors AsiA and RbpA. Our results suggest that the presence of σ4 within the RNA exit channel compensates for the intrinsic instability of short RNA:DNA hybrids by increasing RNAP processivity, thus favoring productive transcription initiation. This “RNAP boosting” activity of the initiation factor is shaped by the the thermodynamics of RNA:DNA interactions and thus, should be relevant for any factor-dependent RNAP.


2019 ◽  
Author(s):  
Nathalie Legrand ◽  
Clemens L. Bretscher ◽  
Svenja Zielke ◽  
Bernhard Wilke ◽  
Michael Daude ◽  
...  

AbstractRepression of transcription by nuclear receptors involves NCOR and SMRT corepressor complexes, which harbour the deacetylase HDAC3 as a subunit. Both deacetylase-dependent and -independent repression mechanisms have been reported for these complexes. In the absence of ligands, the nuclear receptor PPARβ/δ recruits NCOR and SMRT and represses expression of its canonical targets including the ANGPTL4 gene. Agonistic ligands cause corepressor dissociation and enable enhanced induction of transcription by coactivators. Vice versa, recently developed synthetic inverse agonists lead to augmented corepressor recruitment and repression that dominates over activating stimuli. Both basal repression of ANGPTL4 and reinforced repression elicited by inverse agonists are partially insensitive to HDAC inhibition. This raises the question of how PPARβ/δ represses transcription mechanistically.Here, we show that the PPARβ/δ inverse agonist PT-S264 impairs transcription initiation in human cells. Inverse agonist-bound PPARβ/δ interferes with recruitment of Mediator, RNA polymerase II, and TFIIB, but not with recruitment of other basal transcription factors, to the ANGPTL4 promoter. We identify NCOR as the main ligand-dependent interactor of PPARβ/δ in the presence of PT-S264. In PPARβ/δ knockout cells, reconstitution with PPARβ/δ mutants deficient in basal repression recruit less NCOR, SMRT, and HDAC3 to chromatin, concomitant with increased binding of RNA polymerase II. PT-S264 restores binding of NCOR, SMRT, and HDAC3, resulting in diminished polymerase II binding and transcriptional repression. In the presence of HDAC inhibitors, ligand-mediated repression of PPARβ/δ target genes is only partially relieved. Our findings corroborate deacetylase-dependent and -independent repressive functions of HDAC3-containing complexes. Deacetylase-independent repression mediated by binding of inverse agonists to PPARβ/δ involve NCOR/SMRT recruitment and interference with Mediator, TFIIB, and RNA polymerase II binding.


2018 ◽  
Vol 2 (4) ◽  
pp. 517-533 ◽  
Author(s):  
Thomas Fouqueau ◽  
Fabian Blombach ◽  
Gwenny Cackett ◽  
Alice E. Carty ◽  
Dorota M. Matelska ◽  
...  

The archaeal RNA polymerase (RNAP) is a double-psi β-barrel enzyme closely related to eukaryotic RNAPII in terms of subunit composition and architecture, promoter elements and basal transcription factors required for the initiation and elongation phase of transcription. Understanding archaeal transcription is, therefore, key to delineate the universally conserved fundamental mechanisms of transcription as well as the evolution of the archaeo-eukaryotic transcription machineries. The dynamic interplay between RNAP subunits, transcription factors and nucleic acids dictates the activity of RNAP and ultimately gene expression. This review focusses on recent progress in our understanding of (i) the structure, function and molecular mechanisms of known and less characterized factors including Elf1 (Elongation factor 1), NusA (N-utilization substance A), TFS4, RIP and Eta, and (ii) their evolution and phylogenetic distribution across the expanding tree of Archaea.


2017 ◽  
Author(s):  
Yoo Jin Joo ◽  
Scott B. Ficarro ◽  
Luis M. Soares ◽  
Yujin Chun ◽  
Jarrod A. Marto ◽  
...  

AbstractTFIID binds promoter DNA to recruit RNA polymerase II and other basal factors for transcription. Although the TATA-Binding Protein (TBP) subunit of TFIID is necessary and sufficient for in vitro transcription, the TBP-Associated Factor (TAF) subunits recognize downstream promoter elements, act as co-activators, and interact with nucleosomes. Here we show that transcription induces stable TAF binding to downstream promoter DNA, independent of upstream contacts, TBP, or other basal transcription factors. This transcription-dependent TAF complex promotes subsequent activator-independent transcription, and promoter response to TAF mutations in vivo correlates with the level of downstream, rather than overall, Taf1 crosslinking. We propose a new model in which TAFs function as reinitiation factors, accounting for the differential responses of promoters to various transcription factor mutations.


2016 ◽  
Vol 113 (13) ◽  
pp. E1816-E1825 ◽  
Author(s):  
Sarah Schulz ◽  
Andreas Gietl ◽  
Katherine Smollett ◽  
Philip Tinnefeld ◽  
Finn Werner ◽  
...  

Transcription is an intrinsically dynamic process and requires the coordinated interplay of RNA polymerases (RNAPs) with nucleic acids and transcription factors. Classical structural biology techniques have revealed detailed snapshots of a subset of conformational states of the RNAP as they exist in crystals. A detailed view of the conformational space sampled by the RNAP and the molecular mechanisms of the basal transcription factors E (TFE) and Spt4/5 through conformational constraints has remained elusive. We monitored the conformational changes of the flexible clamp of the RNAP by combining a fluorescently labeled recombinant 12-subunit RNAP system with single-molecule FRET measurements. We measured and compared the distances across the DNA binding channel of the archaeal RNAP. Our results show that the transition of the closed to the open initiation complex, which occurs concomitant with DNA melting, is coordinated with an opening of the RNAP clamp that is stimulated by TFE. We show that the clamp in elongation complexes is modulated by the nontemplate strand and by the processivity factor Spt4/5, both of which stimulate transcription processivity. Taken together, our results reveal an intricate network of interactions within transcription complexes between RNAP, transcription factors, and nucleic acids that allosterically modulate the RNAP during the transcription cycle.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Fabian Blombach ◽  
Enrico Salvadori ◽  
Thomas Fouqueau ◽  
Jun Yan ◽  
Julia Reimann ◽  
...  

Transcription initiation of archaeal RNA polymerase (RNAP) and eukaryotic RNAPII is assisted by conserved basal transcription factors. The eukaryotic transcription factor TFIIE consists of α and β subunits. Here we have identified and characterised the function of the TFIIEβ homologue in archaea that on the primary sequence level is related to the RNAPIII subunit hRPC39. Both archaeal TFEβ and hRPC39 harbour a cubane 4Fe-4S cluster, which is crucial for heterodimerization of TFEα/β and its engagement with the RNAP clamp. TFEα/β stabilises the preinitiation complex, enhances DNA melting, and stimulates abortive and productive transcription. These activities are strictly dependent on the β subunit and the promoter sequence. Our results suggest that archaeal TFEα/β is likely to represent the evolutionary ancestor of TFIIE-like factors in extant eukaryotes.


2014 ◽  
Vol 42 (15) ◽  
pp. 9880-9891 ◽  
Author(s):  
Arne H. Smits ◽  
Rik G.H. Lindeboom ◽  
Matteo Perino ◽  
Simon J. van Heeringen ◽  
Gert Jan C. Veenstra ◽  
...  

Abstract While recent developments in genomic sequencing technology have enabled comprehensive transcriptome analyses of single cells, single cell proteomics has thus far been restricted to targeted studies. Here, we perform global absolute protein quantification of fertilized Xenopus laevis eggs using mass spectrometry-based proteomics, quantifying over 5800 proteins in the largest single cell proteome characterized to date. Absolute protein amounts in single eggs are highly consistent, thus indicating a tight regulation of global protein abundance. Protein copy numbers in single eggs range from tens of thousands to ten trillion copies per cell. Comparison between the single-cell proteome and transcriptome reveal poor expression correlation. Finally, we identify 439 proteins that significantly change in abundance during early embryogenesis. Downregulated proteins include ribosomal proteins and upregulated proteins include basal transcription factors, among others. Many of these proteins do not show regulation at the transcript level. Altogether, our data reveal that the transcriptome is a poor indicator of the proteome and that protein levels are tightly controlled in X. laevis eggs.


Sign in / Sign up

Export Citation Format

Share Document