scholarly journals Mapping of the air–sea CO2 flux in the Arctic Ocean and its adjacent seas: Basin-wide distribution and seasonal to interannual variability

Polar Science ◽  
2016 ◽  
Vol 10 (3) ◽  
pp. 323-334 ◽  
Author(s):  
Sayaka Yasunaka ◽  
Akihiko Murata ◽  
Eiji Watanabe ◽  
Melissa Chierici ◽  
Agneta Fransson ◽  
...  
ZooKeys ◽  
2018 ◽  
Vol 771 ◽  
pp. 15-40 ◽  
Author(s):  
Hiroshi Yamasaki ◽  
Katarzyna Grzelak ◽  
Martin V. Sørensen ◽  
Birger Neuhaus ◽  
Kai Horst George

Kinorhynchs rarely show a wide distribution pattern, due to their putatively low dispersal capabilities and/or limited sampling efforts. In this study, a new kinorhynch species is described,Echinoderespterussp. n., which shows a geographically and bathymetrically wide distribution, occurring on the Karasik Seamount and off the Svalbard Islands (Arctic Ocean), on the Sedlo Seamount (northeast Atlantic Ocean), and on the deep-sea floor off Crete and on the Anaximenes Seamount (Mediterranean Sea), at a depth range of 675–4,403 m. The new species is characterized by a combination of middorsal acicular spines on segments 4–8, laterodorsal tubes on segment 10, lateroventral tubes on segment 5, lateroventral acicular spines on segments 6–9, tufts of long hairs rising from slits in a laterodorsal position on segment 9, truncated tergal extensions on segment 11, and the absence of any type-2 gland cell outlet. The specimens belonging to the populations from the Arctic Ocean, the Sedlo Seamount, and the Mediterranean Sea show morphological variation in the thickness and length of the spines as well as in the presence/absence of ventromedial sensory spots on segment 7. The different populations are regarded as belonging to a single species because of their overlapping variable characters.


2011 ◽  
Vol 438 (1) ◽  
pp. 730-732
Author(s):  
M. S. Makhotin ◽  
I. A. Dmitrenko

2015 ◽  
Vol 28 (15) ◽  
pp. 6281-6296 ◽  
Author(s):  
Hyo-Seok Park ◽  
Sukyoung Lee ◽  
Yu Kosaka ◽  
Seok-Woo Son ◽  
Sang-Woo Kim

Abstract The Arctic summer sea ice area has been rapidly decreasing in recent decades. In addition to this trend, substantial interannual variability is present, as is highlighted by the recovery in sea ice area in 2013 following the record minimum in 2012. This interannual variability of the Arctic summer sea ice area has been attributed to the springtime weather disturbances. Here, by utilizing reanalysis- and satellite-based sea ice data, this study shows that summers with unusually small sea ice area are preceded by winters with anomalously strong downward longwave radiation over the Eurasian sector of the Arctic Ocean. This anomalous wintertime radiative forcing at the surface is up to 10–15 W m−2, which is about twice as strong than that during the spring. During the same winters, the poleward moisture and warm-air intrusions into the Eurasian sector of the Arctic Ocean are anomalously strong and the resulting moisture convergence field closely resembles positive anomalies in column-integrated water vapor and tropospheric temperature. Climate model simulations support the above-mentioned findings and further show that the anomalously strong wintertime radiative forcing can decrease sea ice thickness over wide areas of the Arctic Ocean, especially over the Eurasian sector. During the winters preceding the anomalously small summer sea ice area, the upper ocean of the model is anomalously warm over the Barents Sea, indicating that the upper-ocean heat content contributes to winter sea ice thinning. Finally, mass divergence by ice drift in the preceding winter and spring contributes to the thinning of sea ice over the East Siberian and Chukchi Seas, where radiative forcing and upper-ocean heat content anomalies are relatively weak.


2020 ◽  
Vol 66 (4) ◽  
pp. 404-426
Author(s):  
E. A. Cherniavskaia ◽  
L. A. Timokhov ◽  
V. Y. Karpiy ◽  
S. Y. Malinovskiy

2016 ◽  
Vol 43 (13) ◽  
pp. 7019-7027 ◽  
Author(s):  
Q. Wang ◽  
S. Danilov ◽  
T. Jung ◽  
L. Kaleschke ◽  
A. Wernecke

2011 ◽  
Vol 8 (7) ◽  
pp. 1987-2007 ◽  
Author(s):  
I. I. Pipko ◽  
I. P. Semiletov ◽  
S. P. Pugach ◽  
I. Wåhlström ◽  
L. G. Anderson

Abstract. Over the past couple of decades it has become apparent that air-land-sea interactions in the Arctic have a substantial impact on the composition of the overlying atmosphere (ACIA, 2004). The Arctic Ocean is small (only ~4 % of the total World Ocean), but it is surrounded by offshore and onshore permafrost which is thawing at increasing rates under warming conditions, releasing carbon dioxide (CO2) into the water and atmosphere. The Arctic Ocean shelf where the most intensive biogeochemical processes have occurred occupies 1/3 of the ocean. The East Siberian Sea (ESS) shelf is the shallowest and widest shelf among the Arctic seas, and the least studied. The objective of this study was to highlight the importance of different factors that impact the carbon system (CS) as well as the CO2 flux dynamics in the ESS. CS variables were measured in the ESS in September 2003 and, 2004 and in late August–September 2008. It was shown that the western part of the ESS represents a river- and coastal-erosion-dominated heterotrophic ocean margin that is a source for atmospheric CO2. The eastern part of the ESS is a Pacific-water-dominated autotrophic area, which acts as a sink for atmospheric CO2. Our results indicate that the year-to-year dynamics of the partial pressure of CO2 in the surface water as well as the air-sea flux of CO2 varies substantially. In one year the ESS shelf was mainly heterotrophic and served as a moderate summertime source of CO2 (year 2004). In another year gross primary production exceeded community respiration in a relatively large part of the ESS and the ESS shelf was only a weak source of CO2 into the atmosphere (year 2008). It was shown that many factors impact the CS and CO2 flux dynamics (such as river runoff, coastal erosion, primary production/respiration, etc.), but they were mainly determined by the interplay and distribution of water masses that are basically influenced by the atmospheric circulation. In this contribution the air-sea CO2 fluxes were evaluated in the ESS based on measured CS characteristics, and summertime fluxes were estimated. It was shown that the total ESS shelf is a net source of CO2 for the atmosphere in a range of 0.4 × 1012 to 2.3 × 1012 g C.


2022 ◽  
Vol 14 (2) ◽  
pp. 312
Author(s):  
Iwona Wrobel-Niedzwiecka ◽  
Małgorzata Kitowska ◽  
Przemyslaw Makuch ◽  
Piotr Markuszewski

A feed-forward neural network (FFNN) was used to estimate the monthly climatology of partial pressure of CO2 (pCO2W) at a spatial resolution of 1° latitude by 1° longitude in the continental shelf of the European Arctic Sector (EAS) of the Arctic Ocean (the Greenland, Norwegian, and Barents seas). The predictors of the network were sea surface temperature (SST), sea surface salinity (SSS), the upper ocean mixed-layer depth (MLD), and chlorophyll-a concentration (Chl-a), and as a target, we used 2 853 pCO2W data points from the Surface Ocean CO2 Atlas. We built an FFNN based on three major datasets that differed in the Chl-a concentration data used to choose the best model to reproduce the spatial distribution and temporal variability of pCO2W. Using all physical–biological components improved estimates of the pCO2W and decreased the biases, even though Chl-a values in many grid cells were interpolated values. General features of pCO2W distribution were reproduced with very good accuracy, but the network underestimated pCO2W in the winter and overestimated pCO2W values in the summer. The results show that the model that contains interpolating Chl-a concentration, SST, SSS, and MLD as a target to predict the spatiotemporal distribution of pCO2W in the sea surface gives the best results and best-fitting network to the observational data. The calculation of monthly drivers of the estimated pCO2W change within continental shelf areas of the EAS confirms the major impact of not only the biological effects to the pCO2W distribution and Air-Sea CO2 flux in the EAS, but also the strong impact of the upper ocean mixing. A strong seasonal correlation between predictor and pCO2W seen earlier in the North Atlantic is clearly a yearly correlation in the EAS. The five-year monthly mean CO2 flux distribution shows that all continental shelf areas of the Arctic Ocean were net CO2 sinks. Strong monthly CO2 influx to the Arctic Ocean through the Greenland and Barents Seas (>12 gC m−2 day−1) occurred in the fall and winter, when the pCO2W level at the sea surface was high (>360 µatm) and the strongest wind speed (>12 ms−1) was present.


Sign in / Sign up

Export Citation Format

Share Document