scholarly journals Echinoderes pterus sp. n. showing a geographically and bathymetrically wide distribution pattern on seamounts and on the deep-sea floor in the Arctic Ocean, Atlantic Ocean, and the Mediterranean Sea (Kinorhyncha, Cyclorhagida)

ZooKeys ◽  
2018 ◽  
Vol 771 ◽  
pp. 15-40 ◽  
Author(s):  
Hiroshi Yamasaki ◽  
Katarzyna Grzelak ◽  
Martin V. Sørensen ◽  
Birger Neuhaus ◽  
Kai Horst George

Kinorhynchs rarely show a wide distribution pattern, due to their putatively low dispersal capabilities and/or limited sampling efforts. In this study, a new kinorhynch species is described,Echinoderespterussp. n., which shows a geographically and bathymetrically wide distribution, occurring on the Karasik Seamount and off the Svalbard Islands (Arctic Ocean), on the Sedlo Seamount (northeast Atlantic Ocean), and on the deep-sea floor off Crete and on the Anaximenes Seamount (Mediterranean Sea), at a depth range of 675–4,403 m. The new species is characterized by a combination of middorsal acicular spines on segments 4–8, laterodorsal tubes on segment 10, lateroventral tubes on segment 5, lateroventral acicular spines on segments 6–9, tufts of long hairs rising from slits in a laterodorsal position on segment 9, truncated tergal extensions on segment 11, and the absence of any type-2 gland cell outlet. The specimens belonging to the populations from the Arctic Ocean, the Sedlo Seamount, and the Mediterranean Sea show morphological variation in the thickness and length of the spines as well as in the presence/absence of ventromedial sensory spots on segment 7. The different populations are regarded as belonging to a single species because of their overlapping variable characters.

2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Julian David Hunt ◽  
Andreas Nascimento ◽  
Fabio A. Diuana ◽  
Natália de Assis Brasil Weber ◽  
Gabriel Malta Castro ◽  
...  

AbstractThe world is going through intensive changes due to global warming. It is well known that the reduction in ice cover in the Arctic Ocean further contributes to increasing the atmospheric Arctic temperature due to the reduction of the albedo effect and increase in heat absorbed by the ocean’s surface. The Arctic ice cover also works like an insulation sheet, keeping the heat in the ocean from dissipating into the cold Arctic atmosphere. Increasing the salinity of the Arctic Ocean surface would allow the warmer and less salty North Atlantic Ocean current to flow on the surface of the Arctic Ocean considerably increasing the temperature of the Arctic atmosphere and release the ocean heat trapped under the ice. This paper argues that if the North Atlantic Ocean current could maintain the Arctic Ocean ice-free during the winter, the longwave radiation heat loss into space would be larger than the increase in heat absorption due to the albedo effect. This paper presents details of the fundamentals of the Arctic Ocean circulation and presents three possible approaches for increasing the salinity of the surface water of the Arctic Ocean. It then discusses that increasing the salinity of the Arctic Ocean would warm the atmosphere of the Arctic region, but cool down the oceans and possibly the Earth. However, it might take thousands of years for the effects of cooling the oceans to cool the global average atmospheric temperature.


Polar Science ◽  
2016 ◽  
Vol 10 (3) ◽  
pp. 323-334 ◽  
Author(s):  
Sayaka Yasunaka ◽  
Akihiko Murata ◽  
Eiji Watanabe ◽  
Melissa Chierici ◽  
Agneta Fransson ◽  
...  

2020 ◽  
Author(s):  
Stein Sandven ◽  
Hanne Sagen ◽  
Agnieszka Beszczynska-Möller ◽  
Peter Vo ◽  
Marie-Noelle Houssais ◽  
...  

<p>The central Arctic Ocean is one of the least observed oceans in the world. This ice-covered region is challenging for ocean observing with respect to technology, logistics and costs. Many physical, biogeochemical, biological, and geophysical processes in the water column and sea floor under the sea ice are difficult to observe and therefore poorly understood. Today, there are technological advances in platforms and sensors for under-ice observation, which offer possibilities to install and operate sustained observing infrastructures in the Arctic Ocean. The goal of the INTAROS project is to develop integrated observing systems in the Arctic, including improvement of data sharing and dissemination to various user groups. INTAROS supports a number of systems providing data from the ocean in delayed mode as well as in near-real time mode, but only a few operate in the ice-covered areas.</p><p>Autonomous observing platforms used in the ice-free oceans such as Argo floats, gliders, and autonomous surface vehicles cannot yet be used operationally in ice-covered Arctic regions. The limitation is because the sea ice prevents these underwater platforms from reaching the surface for satellite communication and geopositioning. To improve the Arctic Ocean Observing capability OceanObs19 recommended ‘to pilot a sustained multipurpose acoustic network for positioning, tomography, passive acoustics, and communication in an integrated Arctic Observing System, with eventual transition to global coverage’. Acoustic networks have been used locally and regionally in the Arctic for underwater acoustic thermometry, geo-positioning for floats and gliders, and passive acoustic. The Coordinated Arctic Acoustic Thermometry Experiment (CAATEX) is a first step toward developing a basin-scale multipurpose acoustic network using modern instrumentation.</p><p>To provide secure data delivery, submarine cables are needed either as dedicated cabled observatories or as hybrid cable systems (sharing the cable infrastructure between science and commercial telecommunications), or both combined. Several large-scale cabled observatories existing coastal areas in world oceans, but none on the Arctic Ocean. At OceanObs19 it was recommended to transition (telecom+sensing) SMART subsea cable systems from present pilots to trans-ocean implementation, to address climate, ocean circulation, sea level, tsunami and earthquake early warning, ultimately with global coverage. Cabled observatories, either stand alone or branching from a hybrid system, could provide power and real time communication to support connected water column moorings and sea floor instrumentation as well as docking mobile platforms. Subsea cable developers are looking into the possibility to deploy a communication cable across the Arctic Ocean from Europe to Asia, because this offers a much shorter route compared to the terrestrial cables.</p><p> An international consortium of leading scientists in ocean observing with experience in state-of-the-art technologies on platforms, sensors, subsea cable technology, acoustic communication and data transmission plan to establish a project to implement and test the system based on experience from the CAATEX experiment and other Arctic observing system experiments. The INTAROS project is presently developing a Roadmap for an integrated Arctic Observing System, where multipurpose ocean observing systems will be one component.</p>


1960 ◽  
Vol 5 (2) ◽  
pp. 154-161 ◽  
Author(s):  
Kenneth L. Hunkins ◽  
Maurice Ewing ◽  
Bruce C. Heezen ◽  
Robert J. Menzies

2014 ◽  
Vol 106 (3) ◽  
pp. 449-455 ◽  
Author(s):  
Xiuhua Bai ◽  
Qiliang Lai ◽  
Chunming Dong ◽  
Fuying Li ◽  
Zongze Shao

Sign in / Sign up

Export Citation Format

Share Document