Filler toughening of plastics. Part 1—The effect of surface interactions on physico-mechanical properties and rheological behaviour of ultrafine CaCO3/HDPE nanocomposites

Polymer ◽  
2005 ◽  
Vol 46 (3) ◽  
pp. 827-844 ◽  
Author(s):  
A. Lazzeri ◽  
S.M. Zebarjad ◽  
M. Pracella ◽  
K. Cavalier ◽  
R. Rosa
2013 ◽  
Vol 651 ◽  
pp. 245-250
Author(s):  
Tasi Lung Weng ◽  
Wei Ting Lin

The effect of penetrating sealer on the structure of surface pore, mechanical properties, and durability of cement-based composites was studied. Concrete specimens with various water/cement ratios (w/c=0.35, 0.45, 0.55) were cast and treated surfaced with various amounts of penetrating sealer at different ages. The effect of penetrating sealer on the mechanical properties of concrete was assessed by compressive strength. And, the rapid chloride permeability was also explored to test concrete durability. Test results indicate that the application of penetrating sealer significantly improves concrete compressive strength and chloride resistance. By using scanning electron microscopes observation, the penetrating depth of penetrating sealer can be determined and is about 2 cm. The penetrating sealer in this study may be categorized as deep penetrating sealer.


2021 ◽  
Author(s):  
Gurcan Aral ◽  
Md Mahbubul Islam

The understanding of the complex atomistic-scale mechanisms of the oxidation process of carbon (C) coated iron nanowires (Fe NW) and also the resulting modulation of mechanical properties is a highly challenging task.


Author(s):  
Lebogang Lebea ◽  
Harry M Ngwangwa ◽  
Dawood Desai ◽  
Fuluphelo Nemavhola

The initial stability after implantology is paramount to the survival of the dental implant and the surface roughness of the implant plays a vital role in this regard. The characterisation of surface topography is a complicated branch of metrology, with a huge range of parameters available. Each parameter contributes significantly towards the survival and mechanical properties of 3D-printed specimens. The purpose of this paper is to experimentally investigate the effect of surface roughness of 3D-printed dental implants and 3D-printed dogbone tensile samples under areal height (Ra) parameters, amplitude parameters (average of ordinates), skewness (Rsk) parameters and mechanical properties. During the experiment, roughness values were analysed and the results showed that the skewness parameter demonstrated a minimum value of 0.596%. The 3D-printed dental implant recorded Ra with a 3.4 mm diameter at 43.23% and the 3D-printed dental implant with a 4.3 mm diameter at 26.18%. Samples with a complex geometry exhibited a higher roughness surface, which was the greatest difficulty of additive manufacturing when evaluating surface finish. The results show that when the ultimate tensile stress (UTS) decreases from 968.35 MPa to 955.25 MPa, Ra increases by 1.4% and when UTS increases to 961.18 MPa, Ra increases by 0.6%. When the cycle decreases from 262142 to 137433, Ra shows that less than a 90.74% increase in cycle is obtained. For 3D-printed dental implants, the higher the surface roughness, the lower the mechanical properties, ultimately leading to decreased implant life and poor performance.


Sign in / Sign up

Export Citation Format

Share Document