Structural analyses of sphere- and cylinder-forming triblock copolymer thin films near the free surface by atomic force microscopy, X-ray photoelectron spectroscopy, and grazing-incidence small-angle X-ray scattering

Polymer ◽  
2018 ◽  
Vol 147 ◽  
pp. 202-212 ◽  
Author(s):  
Rasha Ahmed Hanafy Bayomi ◽  
Takashi Aoki ◽  
Takuma Shimojima ◽  
Hideaki Takagi ◽  
Nobutaka Shimizu ◽  
...  
1999 ◽  
Vol 38 (4) ◽  
pp. 684 ◽  
Author(s):  
Victor E. Asadchikov ◽  
Angela Duparré ◽  
Stefan Jakobs ◽  
Albert Yu. Karabekov ◽  
Igor V. Kozhevnikov ◽  
...  

1997 ◽  
Vol 81 (3) ◽  
pp. 1212-1216 ◽  
Author(s):  
T. H. Metzger ◽  
K. Haj-Yahya ◽  
J. Peisl ◽  
M. Wendel ◽  
H. Lorenz ◽  
...  

2016 ◽  
Vol 49 (3) ◽  
pp. 823-834 ◽  
Author(s):  
Hyo Seon Suh ◽  
Xuanxuan Chen ◽  
Paulina A. Rincon-Delgadillo ◽  
Zhang Jiang ◽  
Joseph Strzalka ◽  
...  

Grazing-incidence small-angle X-ray scattering (GISAXS) is increasingly used for the metrology of substrate-supported nanoscale features and nanostructured films. In the case of line gratings, where long objects are arranged with a nanoscale periodicity perpendicular to the beam, a series of characteristic spots of high-intensity (grating truncation rods, GTRs) are recorded on a two-dimensional detector. The intensity of the GTRs is modulated by the three-dimensional shape and arrangement of the lines. Previous studies aimed to extract an average cross-sectional profile of the gratings, attributing intensity loss at GTRs to sample imperfections. Such imperfections are just as important as the average shape when employing soft polymer gratings which display significant line-edge roughness. Herein are reported a series of GISAXS measurements of polymer line gratings over a range of incident angles. Both an average shape and fluctuations contributing to the intensity in between the GTRs are extracted. The results are critically compared with atomic force microscopy (AFM) measurements, and it is found that the two methods are in good agreement if appropriate corrections for scattering from the substrate (GISAXS) and contributions from the probe shape (AFM) are accounted for.


Sign in / Sign up

Export Citation Format

Share Document