Stretching-enhanced emission behavior of polyurethane composites containing pyrene derivatives

Polymer ◽  
2021 ◽  
pp. 124364
Author(s):  
Xinzhu Sun ◽  
Danman Guo ◽  
Yifeng Cao ◽  
Faxu Lin ◽  
Huahua Huang ◽  
...  
2021 ◽  
Author(s):  
Yufeng Zhang ◽  
Leibo Tan ◽  
Junqing Shi ◽  
Lei Ji

We summarized the Ir-catalysed borylation of PAHs, especially pyrene, and the optoelectronic materials generated by following this chemistry. The optoelectronic properties of pyrene derivatives have also been discussed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yingtong Zong ◽  
Si-Min Xu ◽  
Wenying Shi ◽  
Chao Lu

AbstractThe living supramolecular polymerization technique provides an exciting research avenue. However, in comparison with the thermodynamic spontaneous nucleation, using simple monomers to realize living supramolecular polymerization is hardly possible from an energy principle. This is because the activation barrier of kinetically trapped simple monomer (nucleation step) is insufficiently high to control the kinetics of subsequent elongation. Here, with the benefit of the confinement from the layered double hydroxide (LDH) nanomaterial, various simple monomers, (such as benzene, naphthalene and pyrene derivatives) successfully form living supramolecular polymer (LSP) with length control and narrow dispersity. The degree of polymerization can reach ~6000. Kinetics studies reveal LDH overcomes a huge energy barrier to inhibit undesired spontaneous nucleation of monomers and disassembly of metastable states. The universality of this strategy will usher exploration into other multifunctional molecules and promote the development of functional LSP.


2021 ◽  
Vol 22 (9) ◽  
pp. 4533
Author(s):  
Tomoyuki Koga ◽  
Shinya Kingetsu ◽  
Nobuyuki Higashi

Self-assembly of artificial peptides has been widely studied for constructing nanostructured materials, with numerous potential applications in the nanobiotechnology field. Herein, we report the synthesis and hierarchical self-assembly of collagen-mimetic peptides (CMPs) bearing various aromatic groups at the N-termini, including 2-naphthyl, 1-naphtyl, anthracenyl, and pyrenyl groups, into nanofibers. The CMPs (R-(GPO)n: n > 4) formed a triple helix structure in water at 4 °C, as confirmed via CD analyses, and their conformations were more stable with increasing hydrophobicity of the terminal aromatic group and peptide chain length. The resulting pre-organized triple helical CMPs showed diverse self-assembly into highly ordered nanofibers, reflecting their slight differences in hydrophobic/hydrophilic balance and configuration of aromatic templates. TEM analysis demonstrated that 2Np-CMPn (n = 6 and 7) and Py-CMP6 provided well-developed natural collagen-like nanofibers and An-CMPn (n = 5–7) self-assembled into rod-like micelle fibers. On the other hand, 2Np-CMP5 and 1Np-CMP6 were unable to form nanofibers under the same conditions. Furthermore, the Py-CMP6 nanofiber was found to encapsulate a guest hydrophobic molecule, Nile red, and exhibited unique emission behavior based on the specific nanostructure. In addition to the ability of CMPs to bind small molecules, their controlled self-assembly enables their versatile utilization in drug delivery and wavelength-conversion nanomaterials.


Author(s):  
Felix Endriss ◽  
Peter Grammer ◽  
Michael Russ ◽  
Harald Thorwarth

2020 ◽  
Vol 27 (1) ◽  
pp. 207-211
Author(s):  
G. Henrieke Heideman ◽  
José Augusto Berrocal ◽  
Meike Stöhr ◽  
E. W. Meijer ◽  
Ben L. Feringa
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document