scholarly journals Torsion test method for mechanical characterization of PLDLA 70/30 ACL interference screws

2014 ◽  
Vol 34 ◽  
pp. 34-41 ◽  
Author(s):  
C.R.M. Roesler ◽  
G.V. Salmoria ◽  
A.D.O. Moré ◽  
J.M. Vassoler ◽  
E.A. Fancello
2016 ◽  
Vol 5 (3-4) ◽  
pp. 183-191 ◽  
Author(s):  
Ali Reza Sadeghi-Avalshahr ◽  
Mohammad Khorsand-Ghayeni ◽  
Samira Nokhasteh ◽  
Amir Mahdi Molavi ◽  
Mohammad Sadeghi-Avalshahr

2019 ◽  
Vol 817 ◽  
pp. 365-370 ◽  
Author(s):  
Alessandro Bellini ◽  
Marco Bovo ◽  
Andrea Incerti ◽  
Claudio Mazzotti

Structural retrofitting with composite materials proved to be an effective technique for rehabilitation of degraded or damaged masonry and concrete buildings. Nowadays, Fiber Reinforced Cementitious Matrix (FRCM) composites are widely used as externally bonded strengthening systems thanks to their high performance, low weight and easiness of installation. Several experimental tests and numerical studies are currently available concerning the tensile and bond behavior of FRCM systems, but a debated and still open issue concerns the methods for the mechanical characterization of the mortar used as matrix within the strengthening system. The present paper analyses and compares different test methods for determining the matrix tensile strength. Pure tensile and flexural tests have been carried out on different mortar matrix samples. In order to evaluate which is the most suitable value to be considered for a correct interpretation and modeling of the composite system, the experimental results obtained through flexural tests on standard mortar specimens have been compared with the outcomes obtained from direct tensile tests on FRCM coupons. The present study represents only a first step for the definition of the most appropriate test method for the mechanical characterization of the matrix used within FRCM strengthening systems.


2018 ◽  
Author(s):  
Devon Jakob ◽  
Le Wang ◽  
Haomin Wang ◽  
Xiaoji Xu

<p>In situ measurements of the chemical compositions and mechanical properties of kerogen help understand the formation, transformation, and utilization of organic matter in the oil shale at the nanoscale. However, the optical diffraction limit prevents attainment of nanoscale resolution using conventional spectroscopy and microscopy. Here, we utilize peak force infrared (PFIR) microscopy for multimodal characterization of kerogen in oil shale. The PFIR provides correlative infrared imaging, mechanical mapping, and broadband infrared spectroscopy capability with 6 nm spatial resolution. We observed nanoscale heterogeneity in the chemical composition, aromaticity, and maturity of the kerogens from oil shales from Eagle Ford shale play in Texas. The kerogen aromaticity positively correlates with the local mechanical moduli of the surrounding inorganic matrix, manifesting the Le Chatelier’s principle. In situ spectro-mechanical characterization of oil shale will yield valuable insight for geochemical and geomechanical modeling on the origin and transformation of kerogen in the oil shale.</p>


2017 ◽  
Vol 5 (3) ◽  
pp. 8
Author(s):  
KUMAR DINESH ◽  
KAUR ARSHDEEP ◽  
AGGARWAL YUGAM KUMAR ◽  
UNIYAL PIYUSH ◽  
KUMAR NAVIN ◽  
...  

Author(s):  
Alexandre Luiz Pereira ◽  
Rafael Oliveira Santos ◽  
DOINA BANEA ◽  
Álisson Lemos

Sign in / Sign up

Export Citation Format

Share Document