Physio-chemical influence of high electron-phonon coupling induced by 120 MeV Ag9+ SHI irradiation on exfoliated MoS2 - PVA nanocomposite films for achieving remarkable electrical conductivity for potential application in organic electronics

2020 ◽  
Vol 91 ◽  
pp. 106776 ◽  
Author(s):  
Amar Ratan ◽  
Suhasini Kunchakara ◽  
Ambuj Tripathi ◽  
Vaishali Singh
1993 ◽  
Vol 48 (15) ◽  
pp. 11385-11389 ◽  
Author(s):  
R. A. Jishi ◽  
M. S. Dresselhaus ◽  
G. Dresselhaus

2013 ◽  
Vol 23 (3) ◽  
pp. 7000104-7000104 ◽  
Author(s):  
W. X. Li ◽  
X. Xu ◽  
K. S. B. De Silva ◽  
F. X. Xiang ◽  
S. X. Dou

2021 ◽  
Vol 12 (6) ◽  
pp. 1690-1695
Author(s):  
Zhongyu Liu ◽  
Yingwei Li ◽  
Wonyong Shin ◽  
Rongchao Jin

2021 ◽  
Vol 103 (2) ◽  
Author(s):  
I.Yu. Sklyadneva ◽  
R. Heid ◽  
P. M. Echenique ◽  
E. V. Chulkov

2021 ◽  
Author(s):  
Zhanyu Jia ◽  
Guangyao Li ◽  
Juan Wang ◽  
shouhua Su ◽  
Jie Wen ◽  
...  

Conductivity, self-healing and moderate mechanical properties are necessary for multifunctional hydrogels which have great potential in health-monitor sensor application. However, the combination of electrical conductivity, self-healing and good mechanical properties...


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rui Su ◽  
Zhaojian Xu ◽  
Jiang Wu ◽  
Deying Luo ◽  
Qin Hu ◽  
...  

AbstractThe performance of perovskite photovoltaics is fundamentally impeded by the presence of undesirable defects that contribute to non-radiative losses within the devices. Although mitigating these losses has been extensively reported by numerous passivation strategies, a detailed understanding of loss origins within the devices remains elusive. Here, we demonstrate that the defect capturing probability estimated by the capture cross-section is decreased by varying the dielectric response, producing the dielectric screening effect in the perovskite. The resulting perovskites also show reduced surface recombination and a weaker electron-phonon coupling. All of these boost the power conversion efficiency to 22.3% for an inverted perovskite photovoltaic device with a high open-circuit voltage of 1.25 V and a low voltage deficit of 0.37 V (a bandgap ~1.62 eV). Our results provide not only an in-depth understanding of the carrier capture processes in perovskites, but also a promising pathway for realizing highly efficient devices via dielectric regulation.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Qing Dong ◽  
Quanjun Li ◽  
Shujia Li ◽  
Xuhan Shi ◽  
Shifeng Niu ◽  
...  

AbstractThe adoption of high pressure not only reinforces the comprehension of the structure and exotic electronic states of transition metal dichalcogenides (TMDs) but also promotes the discovery of intriguing phenomena. Here, 1T-TaS2 was investigated up to 100 GPa, and re-enhanced superconductivity was found with structural phase transitions. The discovered I4/mmm TaS2 presents strong electron–phonon coupling, revealing a good superconductivity of the nonlayered structure. The P–T phase diagram shows a dome shape centered at ~20 GPa, which is attributed to the distortion of the 1T structure. Accompanied by the transition to nonlayered structure above 44.5 GPa, the superconducting critical temperature shows an increasing trend and reaches ~7 K at the highest studied pressure, presenting superior superconductivity compared to the original layered structure. It is unexpected that the pressure-induced re-enhanced superconductivity was observed in TMDs, and the transition from a superconductor with complicated electron-pairing mechanism to a phonon-mediated superconductor would expand the field of pressure-modified superconductivity.


2021 ◽  
Vol 203 (1-2) ◽  
pp. 180-193
Author(s):  
S. Giaremis ◽  
Ph. Komninou ◽  
Th. Karakostas ◽  
J. Kioseoglou

Sign in / Sign up

Export Citation Format

Share Document