Error amplification in capillary viscometry of power law fluids with slip

2020 ◽  
Vol 91 ◽  
pp. 106816 ◽  
Author(s):  
Lorenzo Malagutti ◽  
Francesco Mollica ◽  
Valentina Mazzanti
Author(s):  
Jaspinder Kaur ◽  
Roderick Melnik ◽  
Anurag Kumar Tiwari

Abstract In this present work, forced convection heat transfer from a heated blunt-headed cylinder in power-law fluids has been investigated numerically over the range of parameters, namely, Reynolds number (Re): 1–40, Prandtl number (Pr): 10–100 and power-law index (n): 0.3–1.8. The results are expressed in terms of local parameters, like streamline, isotherm, pressure coefficient, and local Nusselt number and global parameters, like wake length, drag coefficient, and average Nusselt number. The length of the recirculation zone on the rear side of the cylinder increases with the increasing value of Re and n. The effect of the total drag coefficient acting on the cylinder is seen to be higher at the low value of Re and its effect significant in shear-thinning fluids (n < 1). On the heat transfer aspect, the rate of heat transfer in fluids is increased by increasing the value of Re and Pr. The effect of heat transfer is enhanced in shear-thinning fluids up to ∼ 40% and it impedes it’s to ∼20% shear-thickening fluids. In the end, the numerical results of the total drag coefficient and average Nusselt number (in terms of J H −factor) have been correlated by simple expression to estimate the intermediate value for the new application.


2008 ◽  
Vol 63 (9) ◽  
pp. 564-570 ◽  
Author(s):  
Saeid Abbasbandy ◽  
Muhammet Yürüsoy ◽  
Mehmet Pakdemirli

A powerful analytic technique for nonlinear problems, the homotopy analysis method (HAM), is employed to give analytic solutions of power-law fluids of second grade. For the so-called secondorder power-law fluids, the explicit analytic solutions are given by recursive formulas with constant coefficients. Also, for the real power-law index in a quite large range an analytic approach is proposed. It is demonstrated that the approximate solution agrees well with the finite difference solution. This provides further evidence that the homotopy analysis method is a powerful tool for finding excellent approximations to nonlinear equations of the power-law fluids of second grade.


Author(s):  
Cunlu Zhao ◽  
Chun Yang

Electroosmotic flow of power-law fluids in a slit channel is analyzed. The governing equations including the linearized Poisson–Boltzmann equation, the Cauchy momentum equation and the continuity equation are solved to seek analytical expressions for the shear stress, dynamic viscosity and velocity distributions. Specifically, exact solutions of the velocity distributions are explicitly found for several special values of the flow behavior index. Furthermore, with the implementation of an approximate scheme for the hyperbolic cosine function, approximate solutions of the velocity distributions are obtained. In addition, a mathematical expression for the average electroosmotic velocity is derived for large values of the dimensionless electrokinetic parameter, κH, in a fashion similar to the Smoluchowski equation. Hence, a generalized Smoluchowski velocity is introduced by taking into account contributions due to the finite thickness of the electric double layer and the flow behavior index of power-law fluids. Finally, calculations are performed to examine the effects of κH, flow behavior index, double layer thickness, and applied electric field on the shear stress, dynamic viscosity, velocity distribution, and average velocity/flow rate of the electroosmotic flow of power-law fluids.


Sign in / Sign up

Export Citation Format

Share Document