Universal polysiloxane additives for UV curable self-cleaning engineered surfaces

2022 ◽  
Vol 163 ◽  
pp. 106686
Author(s):  
Muhammad Naveed ◽  
Muhammad Rabnawaz
Coatings ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 436 ◽  
Author(s):  
Lionel Wasser ◽  
Sara Dalle Vacche ◽  
Feyza Karasu ◽  
Luca Müller ◽  
Micaela Castellino ◽  
...  

Bio-inspired fluorine-free and self-cleaning polymer coatings were developed using a combination of self-assembly and UV-printing processes. Nasturtium and lotus leaves were selected as natural template surfaces. A UV-curable acrylate oligomer and three acrylated siloxane comonomers with different molecular weights were used. The spontaneous migration of the comonomers towards the polymer–air interface was found to be faster for comonomers with higher molecular weight, and enabled to create hydrophobic surfaces with a water contact angle (WCA) of 105°. The replication fidelity was limited for the nasturtium surface, due to a lack of replication of the sub-micron features. It was accurate for the lotus leaf surface whose hierarchical texture, comprising micropapillae and sub-micron crystalloids, was well reproduced in the acrylate/comonomer material. The WCA of synthetic replica of lotus increased from 144° to 152° with increasing creep time under pressure to 5 min prior to polymerization. In spite of a water sliding angle above 10°, the synthetic lotus surface was self-cleaning with water droplets when contaminated with hydrophobic pepper particles, provided that the droplets had some kinetic energy.


2013 ◽  
Vol 1 (40) ◽  
pp. 12641 ◽  
Author(s):  
Venu Sreekala Smitha ◽  
Kanakkanmavudy B. Jaimy ◽  
Palantavida Shajesh ◽  
Jose K. Jeena ◽  
Krishna Gopakumar Warrier

RSC Advances ◽  
2016 ◽  
Vol 6 (107) ◽  
pp. 105180-105191 ◽  
Author(s):  
Prakash M. Gore ◽  
Susan Zachariah ◽  
Prashant Gupta ◽  
Balasubramanian K.

There are increasing requirements for engineered surfaces with distinct properties such as superhydrophobicity, self-cleaning, high thermal stability, and anti-corrosion.


2018 ◽  
Vol 4 (4) ◽  
pp. 52-63
Author(s):  
V. Yu. Shumskaya ◽  
S. F. Zhandarov ◽  
L. A. Kalinin ◽  
L. F. Ivanov ◽  
V. V. Snezhkov ◽  
...  

2000 ◽  
Vol 628 ◽  
Author(s):  
Guang-Way Jang ◽  
Ren-Jye Wu ◽  
Yuung-Ching Sheen ◽  
Ya-Hui Lin ◽  
Chi-Jung Chang

This work successfully prepared an UV curable organic-inorganic hybrid material consisting of organic modified colloidal silica. Applications of UV curable organic-inorganic hybrid materials include abrasion resistant coatings, photo-patternable thin films and waveguides. Colloidal silica containing reactive functional groups were also prepared by reacting organic silane and tetraethyl orthosilicate (TEOS) using sol-gel process. In addition, the efficiency of grafting organic moiety onto silica nanoparticles was investigated by applying TGA and FTIR techniques. Experimental results indicated a strong interdependence between surface modification efficiency and solution pH. Acrylate-SiO2 hybrid formation could result in a shifting of thermal degradation temperature of organic component from about 200°C to near 400°C. In addition, the stability of organic modified colloidal silica in UV curable formula and the physical properties of resulting coatings were discussed. Furthermore, the morphology of organic modified colloidal silica was investigated by performing TEM and SEM studies‥


Author(s):  
Chun-Wei Yao ◽  
Jorge L. Alvarado ◽  
Charles P. Marsh ◽  
Barclay G. Jones ◽  
Michael K. Collins

2019 ◽  
Author(s):  
Joppe Rutten ◽  
Jens Verschoren ◽  
Nesrin Ozalp ◽  
Cédric Ophoff ◽  
David Moens

Sign in / Sign up

Export Citation Format

Share Document