Effect of gamma irradiation on the physico-mechanical and chemical properties of potato (Solanum tuberosum L.), cv. ‘Kufri Sindhuri’, in non-refrigerated storage conditions

2014 ◽  
Vol 92 ◽  
pp. 37-45 ◽  
Author(s):  
R. Mahto ◽  
M. Das
2021 ◽  
Vol 11 (21) ◽  
pp. 10340
Author(s):  
Heonseok Lee ◽  
Hyeonwook Cheon ◽  
Yonghak Kang ◽  
Seungjun Roh ◽  
Woosuk Kim

In the past few decades, there have been numerous attempts to add plastic aggregates composed of polymeric materials to cementitious composites, either as an alternative to using natural aggregates or as fillers and fibers. However, the addition of plastic aggregates often results in cementitious composites with lower mechanical performance. In this paper, we attempt to address this issue by applying gamma irradiation technology to restore the mechanical performance. We aimed to determine the optimal gamma irradiation and mixing combinations by comparing the experimental results with information summarizing the recent literature related to the use of gamma-irradiated plastic aggregates within cementitious composites. To this end, the effects of changes in the physical and chemical properties of plastics due to irradiation with gamma irradiation on the strength of cementitious composites were evaluated using irradiation doses of 25, 50, 75, and 100 kGy and various plastic materials as key parameters. In the compressive strength test, it was found that adding gamma-irradiated plastic increased the compressive strength of the cementitious composites compared to the nonirradiated plastic. This suggests that the irradiation of plastic aggregates with gamma rays is an effective method to recover some of the strength lost when plastic aggregates are added to cementitious composites. In addition, modifications in the microstructure and chemical properties of the gamma-irradiated plastic were analyzed through SEM and FT-IR analysis, which allowed the determination of the strength enhancement mechanism. The results of this study show the possibility of the state-of-the-art performance improvement method for using plastic aggregate as a substitute for natural aggregate, going further from the plastic performance improvement technology for limited materials and radiation dose presented in previous studies.


2021 ◽  
Vol 22 (10) ◽  
pp. 5208
Author(s):  
Olavi Reinsalu ◽  
Anneli Samel ◽  
Elen Niemeister ◽  
Reet Kurg

Extracellular vesicles (EVs) are valued candidates for the development of new tools for medical applications. Vesicles carrying melanoma-associated antigen A (MAGEA) proteins, a subfamily of cancer-testis antigens, are particularly promising tools in the fight against cancer. Here, we have studied the biophysical and chemical properties of MAGEA4-EVs and show that they are stable under common storage conditions such as keeping at +4 °C and −80 °C for at least 3 weeks after purification. The MAGEA4-EVs can be freeze-thawed two times without losing MAGEA4 in detectable quantities. The attachment of MAGEA4 to the surface of EVs cannot be disrupted by high salt concentrations or chelators, but the vesicles are sensitive to high pH. The MAGEA4 protein can bind to the surface of EVs in vitro, using robust passive incubation. In addition, EVs can be loaded with recombinant proteins fused to the MAGEA4 open reading frame within the cells and also in vitro. The high stability of MAGEA4-EVs ensures their potential for the development of EV-based anti-cancer applications.


Sign in / Sign up

Export Citation Format

Share Document