Evaluation of bulk compression using a discrete element procedure calibrated with data from triaxial compression experiments on single particles

2019 ◽  
Vol 345 ◽  
pp. 74-81 ◽  
Author(s):  
Henrik Jonsson ◽  
Göran Alderborn ◽  
Göran Frenning
2013 ◽  
Vol 353-356 ◽  
pp. 802-805
Author(s):  
Jian Qing Jiang

Red-sandstone granular soil reinforced with gabion-mesh is a new concept of composite reinforced soil. In order to reveal the mechanical properties of this composite reinforced soil, a series of laboratory triaxial compression tests on specimens reinforced with gabion-mesh were carried out, and 3D discrete element method was introduced to simulate the triaxial tests. The macro stress-strain relation of red-sandstone specimens reinforced with gabion-mesh was reproduced by the 3D discrete element model. The results show that 3D discrete element method is an ideal technique to study the meso-mechanical nature characteristics of gabion-mesh reinforced red-sandstone granular soil.


Author(s):  
Weipan Xu ◽  
Haiyang Zeng ◽  
Peng Yang ◽  
Mengyan Zang

The interaction between off-road tires and granular terrain has a great influence on the tractive performance of off-road vehicles. However, the finite element method or the discrete element method cannot effectively study the interaction between off-road tires and granular terrain. The three-dimensional combined finite element and discrete element method is applied to handle this problem. In this study, a calibrated finite element method–discrete element method model is established, in which the finite element model of off-road tire is validated by stiffness tests, while the discrete element model of gravel particles is validated by triaxial compression tests. The calibrated finite element method–discrete element method model can describe the structural mechanics of the off-road tire and the macroscopic mechanical properties of the gravel road. Tractive performance simulations of the off-road tire on gravel road under different slip conditions are performed with the commercial software LS-DYNA. The simulation results are basically corresponded with the soil-bin test results in terms of granular terrain deformation and tractive performance parameters versus the slip rates. Finally, the effects of tread pattern, wheel load, and tire inflation pressure on tractive performance of off-road tire on granular terrain are investigated. It indicates that the calibrated finite element method–discrete element method can be an effective tool for studying the tire–granular terrain interaction and predicting the tractive performance of off-road tire on granular terrain.


2021 ◽  
Vol 11 (21) ◽  
pp. 9952
Author(s):  
Lan Cui ◽  
Wenzhao Cao ◽  
Qian Sheng ◽  
Mingxing Xie ◽  
Tao Yang ◽  
...  

Compared with the commonest geosynthetics-reinforced soil structures, layered geogrids–sand–clay reinforced (LGSCR) structures (School of Architecture and Civil Engineering, Shenyang University of Technology, Shenyang 110870, China) can replace granular materials with clay as the primary backfill material. Up until now, the performance of LGSCR structures under triaxial compression has been unclear. In this paper, the discrete element method was used to simulate the triaxial compression test on the LGSCR samples. Based on the particle flow software PFC3D, three types of cluster particle-simulated sand and the reinforced joints of the geogrid were constructed by secondary development. The effects of the geogrid embedment in sand layers, the number and thickness of sand layers in relation to the deviatoric stress, and the axial strain and the shear strength index of the LGSCR samples were analyzed. The results showed that laying the sand layers in the samples can improve their post-peak strain-softening characteristics and increase their peak strengths under a high confining pressure. A geogrid embedment in sand layers can further enhance the ductility and peak strength of the samples, and in terms of the shear strength index, there is a 41.6% to 54.8% increase in the apparent cohesion of the samples.


2020 ◽  
Vol 103 (3) ◽  
pp. 003685042094089
Author(s):  
Pinpin Qin ◽  
Fengmin Wu ◽  
Da Wu ◽  
Shunfeng Zhang ◽  
Daming Huang

Due to imperfect design norms and guidelines for China’s truck escape ramp, previous studies have not been able to reflect the effect of wheel subsidence process on the deceleration of runaway vehicles. A discrete element method was used to establish an aggregate discrete element and a wheel discrete element. The three-dimensional discrete element model for an aggregate-wheel combination was established based on a particle flow code in three dimensions on a software platform using the “FISH” language. The microscopic parameters of the aggregate discrete element particles and wheel discrete element particles were calibrated using a simulated static triaxial compression test and real vehicle test data, respectively. Four sets of numerical simulation tests were designed for analyzing the influence of the aggregate diameter, grade of the arrester bed, truckload, and entry speed on the wheel subsidence depth and stopping distance of runaway vehicles. The results indicate that the smaller the aggregate diameter and entry speed and the greater the truckload and grade of the arrester bed, the more easily the wheel falls into the gravel aggregate, the better the deceleration effect, and the smaller the stopping distance. As the wheel subsidence depth increases, the speed at the unit stopping distance decreases more quickly. The maximum subsidence depth mainly depends on the truckload. The research results can provide a theoretical basis for the design of the arrester bed length and the thickness of the aggregate pavement in a truck escape ramp.


Sign in / Sign up

Export Citation Format

Share Document