Second-order four-way coupled two-fluid model for gas-particle flow and the numerical simulation in horizontal channels

Author(s):  
Dan Sun
Author(s):  
Swann Thuillet ◽  
Davide Zuzio ◽  
Olivier Rouzaud ◽  
Pierre Gajan

The design of modern aeronautical propulsion systems is constantly optimized to reduce pollutant emissions whileincreasing fuel combustion efficiency. In order to get a proper mixing of fuel and air, Liquid Jets Injected in gaseous Crossflows (LJICF) are found in numerous injection devices. However, should combustion instabilities appear in the combustion chamber, the response of the liquid jet and its primary atomization is still largely unknown. Coupling between an unstable combustion and the fuel injection process has not been well understood and can result from multiple basic interactions.The aim of this work is to predict by numerical simulation the effect of an acoustic perturbation of the shearing air flow on the primary breakup of a liquid jet. Being the DNS approach too expensive for the simulation of complex injector geometries, this paper proposes a numerical simulation of a LJICF based on a multiscale approach which can be easily integrated in industrial LES of combustion chambers. This approach results in coupling of two models: a two-fluid model, based on the Navier-Stokes equations for compressible fluids, able to capture the largest scales of the jet atomization and the breakup process of the liquid column; and a dispersed phase approach, used for describing the cloud of droplets created by the atomization of the liquid jet. The coupling of these two approaches is provided by an atomization and re-impact models, which ensure liquid transfer between the two-fluid model and the spray model. The resulting numerical method is meant to capture the main jet body characteristics, the generation of the liquid spray and the formation of a liquid film whenever the spray impacts a solid wall.Three main features of the LJICF can be used to describe, in a steady state flow as well as under the effect of the acoustic perturbation, the jet atomization behavior: the jet trajectory, the jet breakup length and droplets size and distribution.The steady state simulations provide good agreement with ONERA experiments conducted under the same condi- tions, characterized by a high Weber number (We>150). The multiscale computation gives the good trajectory of the liquid column and a good estimation of the column breakup location, for different liquid to air momentum flux ratios. The analysis of the droplet distribution in space is currently undergoing. A preliminary unsteady simulation was able to capture the oscillation of the jet trajectory, and the unsteady droplets generation responding to the acousticperturbation.DOI: http://dx.doi.org/10.4995/ILASS2017.2017.4697


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Jamel Chahed ◽  
Lucien Masbernat

Abstract A two-fluid model with second-order turbulence closure is used for the simulation of a turbulent bubbly boundary layer. The turbulence model is based on the decomposition of the Reynolds stress tensor in the liquid phase into two parts: a turbulent part and a pseudo-turbulent part. The reduction in second-order turbulence closure in the near-wall region is interpreted according to a modified wall logarithmic law. Numerical simulations of bubbly boundary layer developing on a vertical flat plate were performed in order to analyze the bubbles effect on the liquid turbulence structure and to evaluate the respective roles of turbulence and of interfacial forces in the near-wall distribution of the void fraction. The two-fluid model with the second-order turbulence closure succeeds in reproducing the diminution of the turbulent intensity observed in the near-wall region of bubbly boundary layer and the increase in turbulence outside the boundary layer. The analysis of the interfacial force in the near-wall zone has led to the development of relatively simple formulation of the lift-wall force in the logarithmic zone that depends on dimensionless distances to the wall. After appropriate adjustment, this formulation makes it possible to reproduce the shape of the near-wall void fraction peaking observed in bubbly boundary layer experiments.


2011 ◽  
Vol 396-398 ◽  
pp. 356-360
Author(s):  
Qun Shuai ◽  
Gen Lin Niu ◽  
Hui Zhao ◽  
Qiang Li

The implementation of the kinetic theory for granular flows added strength to the two-phase flow model in the mini-riser. This model uses simulating and calculating commercial software of Fluent to simulate the mini-riser with 0.012m ID and 3m height. Euler-Euler two fluid model was adopted in two dimensional numerical simulation, according to kinetic theory,the solid stress was calculated based on granular temperature and granular viscosity obtained through simulation which could be used to describe the collision between particles. Simulation results, such as solid phase fraction and solid phase velocity, under different operational conditions basically agree well with the experimental measurement.


2013 ◽  
Vol 274 ◽  
pp. 596-599 ◽  
Author(s):  
Ju Hui Chen ◽  
Ting Hu ◽  
Jiu Ru Li

Flow behavior of gas and particles is performed by means of gas–solid two-fluid model with the large eddy simulation for gas and the second order moment for particles in the riser. This study shows that the computed solids volume fractions of two cases are compared with the experimental data using a two-dimensional model. The gas and solid velocity is computed.


Sign in / Sign up

Export Citation Format

Share Document