Combining detrital zircon shape and U–Pb–Hf isotope analyses for provenance studies – An example from the Aquiri region, Amazon Craton, Brazil

2021 ◽  
Vol 364 ◽  
pp. 106343
Author(s):  
Armin Zeh ◽  
Alexandre Raphael Cabral
Lithos ◽  
2017 ◽  
Vol 278-281 ◽  
pp. 383-399 ◽  
Author(s):  
M.F. Pereira ◽  
G. Gutíerrez-Alonso ◽  
J.B. Murphy ◽  
K. Drost ◽  
C. Gama ◽  
...  

2020 ◽  
Vol 346 ◽  
pp. 105771 ◽  
Author(s):  
Alex J. Choupina A. Silva ◽  
Luiz Sérgio A. Simões ◽  
Scott Andrew DuFrane ◽  
Leonardo Azevedo Sá Alkmin ◽  
Rodrigo Irineu Cerri

2013 ◽  
Vol 151 (5) ◽  
pp. 816-829 ◽  
Author(s):  
MAGNUS KRISTOFFERSEN ◽  
TOM ANDERSEN ◽  
ARILD ANDRESEN

AbstractU–Pb and Lu–Hf isotope analyses of detrital zircon from the latest Ordovician (Hirnantian) Langøyene Formation, the Late Silurian Ringerike Group and the Late Carboniferous Asker Group in the Oslo Rift were obtained by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Overall the U–Pb dating yielded ages within the range 2861–313 Ma. The U–Pb age and Lu–Hf isotopic signatures correspond to virtually all known events of crustal evolution in Fennoscandia, as well as synorogenic intrusions from the Norwegian Caledonides. Such temporally and geographically diverse source areas likely reflect multiple episodes of sediment recycling in Fennoscandia, and highlights the intrinsic problem of using zircon as a tracer-mineral in ‘source to sink’ sedimentary provenance studies. In addition to its mostly Fennoscandia-derived detritus, the Asker Group also have zircon grains of Late Devonian – Late Carboniferous age. Since no rocks of these ages are known in Fennoscandia, these zircons are inferred to be derived from the Variscan Orogen of central Europe.


Minerals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 36 ◽  
Author(s):  
Victoria B. Ershova ◽  
Andrei V. Prokopiev ◽  
Andrey K. Khudoley ◽  
Tom Andersen ◽  
Kåre Kullerud ◽  
...  

U–Pb and Lu–Hf isotope analyses of detrital zircons collected from metasedimentary rocks from the southern part of Kara Terrane (northern Taimyr and Severnaya Zemlya archipelago) provide vital information about the paleogeographic and tectonic evolution of the Russian High Arctic. The detrital zircon signatures of the seven dated samples are very similar, suggesting a common provenance for the clastic detritus. The majority of the dated grains belong to the late Neoproterozoic to Cambrian ages, which suggests the maximum depositional age of the enclosing sedimentary units to be Cambrian. The εHf(t) values indicate that juvenile magma mixed with evolved continental crust and the zircons crystallized within a continental magmatic arc setting. Our data strongly suggest that the main provenance for the studied clastics was located within the Timanian Orogen. A review of the available detrital zircon ages from late Neoproterozoic to Cambrian strata across the wider Arctic strongly suggests that Kara Terrane, Novaya Zemlya, Seward Peninsula (Arctic Alaska), Alexander Terrane, De Long Islands, and Scandinavian Caledonides all formed a single tectonic domain during the Cambrian age, with clastics predominantly sourced from the Timanian Orogen.


Geology ◽  
2005 ◽  
Vol 33 (8) ◽  
pp. 637-640 ◽  
Author(s):  
G. Gutiérrez-Alonso ◽  
J. Fernández-Suárez ◽  
Alan S. Collins ◽  
I. Abad ◽  
F. Nieto

Abstract The 40Ar/39Ar age data on single detrital muscovite grains complement U-Pb zircon ages in provenance studies, as micas are mostly derived from proximal sources and record low-temperature processes. Ediacaran and Cambrian sedimentary rocks from northwest Iberia contain unmetamorphosed detrital micas whose 40Ar/39Ar age spectra suggest an Amazonian–Middle American provenance. The Ediacaran sample contained only Neoproterozoic micas (590–783 Ma), whereas the Cambrian sample contained three age groups: Neoproterozoic (550–640 Ma, Avalonian–Cadomian–Pan African), Mesoproterozoic- Neoproterozoic boundary (ca. 920–1060 Ma, Grenvillian-Sunsas), and late Paleoproterozoic (ca. 1580–1780 Ma, Rio Negro). Comparison of 40Ar/39Ar muscovite ages with published detrital zircon age data from the same formations supports the hypothesis that the Neoproterozoic basins of northwest Iberia were located in a peri-Amazonian realm, where the sedimentary input was dominated by local periarc sources. Tectonic slivering and strike-slip transport along the northern Gondwanan margin affected both the basins and fragments of basement that were transferred from Amazonian to northern African realms during the latest Neoproterozoic–earliest Cambrian. Exhumation and erosion of these basement sources caused shedding of detritus to the Cambrian basins, in addition to detritus sourced in the continental mainland. The apparent dominance of Rio Negro–aged micas in the Cambrian sandstone suggests the presence of unexposed basement of that age beneath the core of the Ibero-Armorican Arc.


Sign in / Sign up

Export Citation Format

Share Document