Hyper-production of large proteins of spider dragline silk MaSp2 by Escherichia coli via synthetic biology approach

2016 ◽  
Vol 51 (4) ◽  
pp. 484-490 ◽  
Author(s):  
Yan-Xiang Yang ◽  
Zhi-Gang Qian ◽  
Jian-Jiang Zhong ◽  
Xiao-Xia Xia
Author(s):  
Chandrayee Talukdar ◽  
Swastik Sastri

The important properties of spider dragline silk and other protein polymers will find many applications. We have demonstrated the production of spider silk, which has many important properties, are produced from the bacteria including Escherichia coli. The productions of high molecular weight spider drag line encoded by synthetic genes. Silk protein can be efficiently produced by the microbial system has become an advantageous method like quick secretion and simple product recovery has become an efficient method .From the observation of various experiments done by several scientists has shown silk made in laboratory. The study of RIKEN centre for sustainable resource science has shown that spider silk can be produce huge amount. Observation shown that joining of the fragments by split intein sequence  which then cut itself to yield full name protein .Spun into fibers make the microbial spider silk tough , stretchable and stronger. Better modification of bioengineering can increase the amount of production.


2009 ◽  
pp. 301-329 ◽  
Author(s):  
Alexander J. Ninfa ◽  
Mariette R. Atkinson ◽  
Daniel Forger ◽  
Stephen Atkins ◽  
David Arps ◽  
...  

Evolution ◽  
2006 ◽  
Vol 60 (12) ◽  
pp. 2539 ◽  
Author(s):  
Brook O. Swanson ◽  
Todd A. Blackledge ◽  
Adam P. Summers ◽  
Cheryl Y. Hayashi

2019 ◽  
Author(s):  
Thomas Siemon ◽  
Zhangqian Wang ◽  
Guangkai Bian ◽  
Tobias Seitz ◽  
Ziling Ye ◽  
...  

Herein, we report the semisynthetic production of the potent transient receptor potential canonical (TRPC) channel agonist (−)-englerin A (EA), using guaia-6,10(14)-diene as the starting material. Guaia-6,10(14)-diene was systematically engineered in Escherichia coli and Saccharomyces cerevisiae using the CRISPR/Cas9 system and produced with high titers. This provided us the opportunity to execute a concise chemical synthesis of EA and the two related guaianes (−)-oxyphyllol and (+)-orientalol E. The potentially scalable approach combines the advantages of synthetic biology and chemical synthesis and provides an efficient and economical method for producing EA as well as its analogs.


2019 ◽  
Author(s):  
Thomas Siemon ◽  
Zhangqian Wang ◽  
Guangkai Bian ◽  
Tobias Seitz ◽  
Ziling Ye ◽  
...  

Herein, we report the semisynthetic production of the potent transient receptor potential canonical (TRPC) channel agonist (−)-englerin A (EA), using guaia-6,10(14)-diene as the starting material. Guaia-6,10(14)-diene was systematically engineered in Escherichia coli and Saccharomyces cerevisiae using the CRISPR/Cas9 system and produced with high titers. This provided us the opportunity to execute a concise chemical synthesis of EA and the two related guaianes (−)-oxyphyllol and (+)-orientalol E. The potentially scalable approach combines the advantages of synthetic biology and chemical synthesis and provides an efficient and economical method for producing EA as well as its analogs.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jasmine M. Hershewe ◽  
Katherine F. Warfel ◽  
Shaelyn M. Iyer ◽  
Justin A. Peruzzi ◽  
Claretta J. Sullivan ◽  
...  

AbstractCell-free gene expression (CFE) systems from crude cellular extracts have attracted much attention for biomanufacturing and synthetic biology. However, activating membrane-dependent functionality of cell-derived vesicles in bacterial CFE systems has been limited. Here, we address this limitation by characterizing native membrane vesicles in Escherichia coli-based CFE extracts and describing methods to enrich vesicles with heterologous, membrane-bound machinery. As a model, we focus on bacterial glycoengineering. We first use multiple, orthogonal techniques to characterize vesicles and show how extract processing methods can be used to increase concentrations of membrane vesicles in CFE systems. Then, we show that extracts enriched in vesicle number also display enhanced concentrations of heterologous membrane protein cargo. Finally, we apply our methods to enrich membrane-bound oligosaccharyltransferases and lipid-linked oligosaccharides for improving cell-free N-linked and O-linked glycoprotein synthesis. We anticipate that these methods will facilitate on-demand glycoprotein production and enable new CFE systems with membrane-associated activities.


Sign in / Sign up

Export Citation Format

Share Document