Flame characteristics of turbulent lean premixed methane/air flames at high pressure: Turbulent flame speed and flame brush thickness

2007 ◽  
Vol 31 (2) ◽  
pp. 3083-3090 ◽  
Author(s):  
P. Griebel ◽  
P. Siewert ◽  
P. Jansohn
Author(s):  
P. Griebel ◽  
R. Bombach ◽  
A. Inauen ◽  
R. Scha¨ren ◽  
S. Schenker ◽  
...  

The present experimental study focuses on flame characteristics and turbulent flame speeds of lean premixed flames typical for stationary gas turbines. Measurements were performed in a generic combustor at a preheating temperature of 673 K, pressures up to 14.4 bars (absolute), a bulk velocity of 40 m/s, and an equivalence ratio in the range of 0.43–0.56. Turbulence intensities and integral length scales were measured in an isothermal flow field with Particle Image Velocimetry (PIV). The turbulence intensity (u′) and the integral length scale (LT) at the combustor inlet were varied using turbulence grids with different blockage ratios and different hole diameters. The position, shape, and fluctuation of the flame front were characterized by a statistical analysis of Planar Laser Induced Fluorescence images of the OH radical (OH-PLIF). Turbulent flame speeds were calculated and their dependence on operating conditions (p, φ) and turbulence quantities (u′, LT) are discussed and compared to correlations from literature. No influence of pressure on the most probable flame front position or on the turbulent flame speed was observed. As expected, the equivalence ratio had a strong influence on the most probable flame front position, the spatial flame front fluctuation, and the turbulent flame speed. Decreasing the equivalence ratio results in a shift of the flame front position farther downstream due to the lower fuel concentration and the lower adiabatic flame temperature and subsequently lower turbulent flame speed. Flames operated at leaner equivalence ratios show a broader spatial fluctuation as the lean blow-out limit is approached and therefore are more susceptible to flow disturbances. In addition, because of a lower turbulent flame speed these flames stabilize farther downstream in a region with higher velocity fluctuations. This increases the fluctuation of the flame front. Flames with higher turbulence quantities (u′, LT) in the vicinity of the combustor inlet exhibited a shorter length and a higher calculated flame speed. An enhanced turbulent heat and mass transport from the recirculation zone to the flame root location due to an intensified mixing which might increase the preheating temperature or the radical concentration is believed to be the reason for that.


2015 ◽  
Vol 162 (7) ◽  
pp. 2778-2787 ◽  
Author(s):  
Ansgar Ratzke ◽  
Tobias Schöffler ◽  
Kalyan Kuppa ◽  
Friedrich Dinkelacker

Author(s):  
Graham Goldin ◽  
Zhuyin Ren ◽  
Hendrik Forkel ◽  
Liuyan Lu ◽  
Venkat Tangirala ◽  
...  

Conventional Flamelet Generated Manifold (FGM) closure of the mean progress variable reaction rate assumes PDF shapes to account for turbulent fluctuations. The FGM parameters are commonly assumed to be statistically independent, and the marginal PDFs invariably require second moments, which are difficult to model accurately and have limited coefficients that can be adjusted to calibrate the simulation. A new model is presented which locates the flame brush with a turbulent flame speed model, and applies the FGM kinetic rate to model kinetically limited processes, such as CO quenching, behind the flame-front. The model is applied to 3D RANS simulations of an equivalence ratio sweep in the GE Entitlement Rig perfectly premixed combustor experiment. Calculating the mean FGM reaction progress source term with standard assumed shape PDFs leads to a narrow flame brush and equilibrium CO outlet emissions. By limiting the mean FGM reaction progress source term by the turbulent flame speed model, the flame brush is broadened and super-equilibrium CO is predicted at the outlet. Good agreement with measurement is obtained with default model coefficients. Since the majority of the mean reaction progress source term is limited by the turbulent flame speed reaction rate, it is demonstrated that the model is relatively insensitive to assumed shape PDFs for the FGM rate, as well as the parameter used to determine the turbulent flame leading edge.


Author(s):  
Jan A. M. Withag ◽  
Jim B. W. Kok ◽  
Khawar Syed

The main objective of the present study is to demonstrate accurate low frequency transient turbulent combustion modeling. For accurate flame dynamics some improvements were made to the standard TFC combustion model for lean premixed combustion. With use of a 1D laminar flamelet code, predictions have been made for the laminar flame speed and the critical strain rate to improve the TFC (Turbulent Flame Speed Closure) combustion model. The computational fluid dynamics program CFX is used to perform transient simulations. These results were compared with experimental data of Weigand et al [1]. Two different turbulence models have been used for predictions of the turbulent flow.


1997 ◽  
Vol 353 ◽  
pp. 83-114 ◽  
Author(s):  
DENIS VEYNANTE ◽  
THIERRY POINSOT

In most practical situations, turbulent premixed flames are ducted and, accordingly, subjected to externally imposed pressure gradients. These pressure gradients may induce strong modifications of the turbulent flame structure because of buoyancy effects between heavy cold fresh and light hot burnt gases. In the present work, the influence of a constant acceleration, inducing large pressure gradients, on a premixed turbulent flame is studied using direct numerical simulations.A favourable pressure gradient, i.e. a pressure decrease from unburnt to burnt gases, is found to decrease the flame wrinkling, the flame brush thickness, and the turbulent flame speed. It also promotes counter-gradient turbulent transport. On the other hand, adverse pressure gradients tend to increase the flame brush thickness and turbulent flame speed, and promote classical gradient turbulent transport. As proposed by Libby (1989), the turbulent flame speed is modified by a buoyancy term linearly dependent on both the imposed pressure gradient and the integral length scale lt.A simple model for the turbulent flux u″c″ is also proposed, validated from simulation data and compared to existing models. It is shown that turbulent premixed flames can exhibit both gradient and counter-gradient transport and a criterion integrating the effects of pressure gradients is derived to differentiate between these regimes. In fact, counter-gradient diffusion may occur in most practical ducted flames.


Author(s):  
S. Daniele ◽  
P. Jansohn

There is an obvious lack of data and understanding of the behavior of turbulent flames at high temperature and high pressure, especially concerning hydrogen containing fuels. Among the many relevant parameters, the turbulent flame speed “ST” is one of the most interesting for scientists and engineers. This paper reports an experimental investigation of premixed syngas combustion at gas-turbine like conditions, with emphasis on the determination of ST/SL derived as global fuel consumption per unit time. Experiments at pressures up to 2.00 MPa, inlet temperatures and velocities up to 773K and 150 m/s respectively, u′/SL greater than 100 are presented. Comparison between different syngas mixtures and methane clearly show much higher ST/SL for the former fuel. It is shown that ST/SL is strongly dependent on preferential diffusive-thermal (PDT) effects, co-acting with hydrodynamic effects, even for very high u′/SL. ST/SL increases with rising hydrogen content in the fuel mixture and with pressure. A correlation for ST/SL valid for all investigated fuel mixtures, including methane, is proposed in terms of turbulence properties (turbulence intensity and integral length scale), combustion properties (laminar flame speed and laminar flame thickness) and operating conditions (pressure and inlet temperature). The correlation captures effects of preferential diffusive-thermal and hydrodynamic instabilities.


Fluids ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 146 ◽  
Author(s):  
Aaron Endres ◽  
Thomas Sattelmayer

Boundary layer flashback from the combustion chamber into the premixing section is a threat associated with the premixed combustion of hydrogen-containing fuels in gas turbines. In this study, the effect of pressure on the confined flashback behaviour of hydrogen-air flames was investigated numerically. This was done by means of large eddy simulations with finite rate chemistry as well as detailed chemical kinetics and diffusion models at pressures between 0 . 5 and 3 . It was found that the flashback propensity increases with increasing pressure. The separation zone size and the turbulent flame speed at flashback conditions decrease with increasing pressure, which decreases flashback propensity. At the same time the quenching distance decreases with increasing pressure, which increases flashback propensity. It is not possible to predict the occurrence of boundary layer flashback based on the turbulent flame speed or the ratio of separation zone size to quenching distance alone. Instead the interaction of all effects has to be accounted for when modelling boundary layer flashback. It was further found that the pressure rise ahead of the flame cannot be approximated by one-dimensional analyses and that the assumptions of the boundary layer theory are not satisfied during confined boundary layer flashback.


Sign in / Sign up

Export Citation Format

Share Document