Correlations for Turbulent Flame Speed of Different Syngas Mixtures at High Pressure and Temperature

Author(s):  
S. Daniele ◽  
P. Jansohn

There is an obvious lack of data and understanding of the behavior of turbulent flames at high temperature and high pressure, especially concerning hydrogen containing fuels. Among the many relevant parameters, the turbulent flame speed “ST” is one of the most interesting for scientists and engineers. This paper reports an experimental investigation of premixed syngas combustion at gas-turbine like conditions, with emphasis on the determination of ST/SL derived as global fuel consumption per unit time. Experiments at pressures up to 2.00 MPa, inlet temperatures and velocities up to 773K and 150 m/s respectively, u′/SL greater than 100 are presented. Comparison between different syngas mixtures and methane clearly show much higher ST/SL for the former fuel. It is shown that ST/SL is strongly dependent on preferential diffusive-thermal (PDT) effects, co-acting with hydrodynamic effects, even for very high u′/SL. ST/SL increases with rising hydrogen content in the fuel mixture and with pressure. A correlation for ST/SL valid for all investigated fuel mixtures, including methane, is proposed in terms of turbulence properties (turbulence intensity and integral length scale), combustion properties (laminar flame speed and laminar flame thickness) and operating conditions (pressure and inlet temperature). The correlation captures effects of preferential diffusive-thermal and hydrodynamic instabilities.

Author(s):  
Olivier Mathieu ◽  
Eric L. Petersen ◽  
Alexander Heufer ◽  
Nicola Donohoe ◽  
Wayne Metcalfe ◽  
...  

Depending on the feedstock and the production method, the composition of syngas can include (in addition to H2 and CO) small hydrocarbons, diluents (CO2, water, and N2), and impurities (H2S, NH3, NOx, etc.). Despite this fact, most of the studies on syngas combustion do not include hydrocarbons or impurities and in some cases not even diluents in the fuel mixture composition. Hence, studies with realistic syngas composition are necessary to help designing gas turbines. The aim of this work was to investigate numerically the effect of the variation in the syngas composition on some fundamental combustion properties of premixed systems such as laminar flame speed and ignition delay time at realistic engine operating conditions. Several pressures, temperatures, and equivalence ratios were investigated. To perform this parametric study, a state-of-the-art C0-C5 detailed kinetics mechanism was used. Results of this study showed that the addition of hydrocarbons generally reduces the reactivity of the mixture (longer ignition delay time, slower flame speed) due to chemical kinetic effects. The amplitude of this effect is however dependent on the nature and concentration of the hydrocarbon as well as the initial condition (pressure, temperature, and equivalence ratio).


Author(s):  
Ehsan Abbasi-Atibeh ◽  
Sandeep Jella ◽  
Jeffrey M. Bergthorson

Sensitivity to stretch and differential diffusion of chemical species are known to influence premixed flame propagation, even in the turbulent environment where mass diffusion can be greatly enhanced. In this context, it is convenient to characterize flames by their Lewis number (Le), a ratio of thermal-to-mass diffusion. The work reported in this paper describes a study of flame stabilization characteristics when the Le is varied. The test data is comprised of Le ≪ 1 (Hydrogen), Le ≈ 1 (Methane), and Le > 1 (Propane) flames stabilized at various turbulence levels. The experiments were carried out in a Hot exhaust Opposed-flow Turbulent Flame Rig (HOTFR), which consists of two axially-opposed, symmetric turbulent round jets. The stagnation plane between the two jets allows the aerodynamic stabilization of a flame, and clearly identifies fuel influences on turbulent flames. Furthermore, high-speed Particle Image Velocimetry (PIV), using oil droplet seeding, allowed simultaneous recordings of velocity (mean and rms) and flame surface position. These experiments, along with data processing tools developed through this study, illustrated that in the mixtures with Le ≪ 1, turbulent flame speed increases considerably compared to the laminar flame speed due to differential diffusion effects, where higher burning rates compensate for the steepening average velocity gradient, and keeps these flames almost stationary as bulk flow velocity increases. These experiments are suitable for validating the ability of turbulent combustion models to predict lifted, aerodynamically-stabilized flames. In the final part of this paper, we model the three fuels at two turbulence intensities using the FGM model in a RANS context. Computations reveal that the qualitative flame stabilization trends reproduce the effects of turbulence intensity, however, more accurate predictions are required to capture the influences of fuel variations and differential diffusion.


Author(s):  
Ehsan Abbasi-Atibeh ◽  
Sandeep Jella ◽  
Jeffrey M. Bergthorson

Sensitivity to stretch and differential diffusion of chemical species are known to influence premixed flame propagation, even in the turbulent environment where mass diffusion can be greatly enhanced. In this context, it is convenient to characterize flames by their Lewis number (Le), a ratio of thermal-to-mass diffusion. The work reported in this paper describes a study of flame stabilization characteristics when Le is varied. The test data are comprised of Le≪1 (hydrogen), Le≈1 (methane), and Le>1 (propane) flames stabilized at various turbulence levels. The experiments were carried out in a hot exhaust opposed-flow turbulent flame rig (HOTFR), which consists of two axially opposed, symmetric jets. The stagnation plane between the two jets allows the aerodynamic stabilization of a flame and clearly identifies fuel influences on turbulent flames. Furthermore, high-speed particle image velocimetry (PIV), using oil droplet seeding, allowed simultaneous recordings of velocity (mean and rms) and flame surface position. These experiments, along with data processing tools developed through this study, illustrated that in the mixtures with Le≪1, turbulent flame speed increases considerably compared to the laminar flame speed due to differential diffusion effects, where higher burning rates compensate for the steepening average velocity gradient and keeps these flames almost stationary as bulk flow velocity increases. These experiments are suitable for validating the ability of turbulent combustion models to predict lifted, aerodynamically stabilized flames. In the final part of this paper, we model the three fuels at two turbulence intensities using the flamelet generated manifolds (FGM) model in a Reynolds-averaged Navier–Stokes (RANS) context. Computations reveal that the qualitative flame stabilization trends reproduce the effects of turbulence intensity; however, more accurate predictions are required to capture the influences of fuel variations and differential diffusion.


The influence of turbulence intensity, scale and vorticity on burning velocity and flame structure is examined by using premixed propane-air mixtures supplied at atmospheric pressure to a combustion chamber 31cm long and lOcmx 10 cm cross-section. The chamber is fitted with transparent side walls to permit flame observations and schlieren photography. Control over the turbulence level is achieved by means of grids located upstream of the combustion zone. By suitable modifications to grid geometry and flow velocity, it is possible to vary turbulence intensity and scale independently within the combustion zone in such a manner that their separate effects on burning velocity and flame structure are readily distinguished. From analysis of the results obtained three distinct regions may be identified, each having different characteristics in regard to the effect of scale on turbulent burning velocity. For each region a mechanism of turbulent flame propagation is proposed which describes the separate influences on burning velocity of turbulence intensity, turbulence scale, laminar flame speed and flame thickness. The arguments presented in support of this 3-region model are substantiated by the experimental data and by the pictorial evidence on flame structure provided by the schlieren photographs. This model also sheds light on some of the characteristics which turbulent flames have in common with laminar flames when the latter are subjected to pressure and velocity fluctuations. Finally the important role of vorticity is examined and it is found that turbulent flame speed is highest when the rate of production of vorticity is equal to about half the rate of viscous dissipation.


Author(s):  
P. Griebel ◽  
R. Bombach ◽  
A. Inauen ◽  
R. Scha¨ren ◽  
S. Schenker ◽  
...  

The present experimental study focuses on flame characteristics and turbulent flame speeds of lean premixed flames typical for stationary gas turbines. Measurements were performed in a generic combustor at a preheating temperature of 673 K, pressures up to 14.4 bars (absolute), a bulk velocity of 40 m/s, and an equivalence ratio in the range of 0.43–0.56. Turbulence intensities and integral length scales were measured in an isothermal flow field with Particle Image Velocimetry (PIV). The turbulence intensity (u′) and the integral length scale (LT) at the combustor inlet were varied using turbulence grids with different blockage ratios and different hole diameters. The position, shape, and fluctuation of the flame front were characterized by a statistical analysis of Planar Laser Induced Fluorescence images of the OH radical (OH-PLIF). Turbulent flame speeds were calculated and their dependence on operating conditions (p, φ) and turbulence quantities (u′, LT) are discussed and compared to correlations from literature. No influence of pressure on the most probable flame front position or on the turbulent flame speed was observed. As expected, the equivalence ratio had a strong influence on the most probable flame front position, the spatial flame front fluctuation, and the turbulent flame speed. Decreasing the equivalence ratio results in a shift of the flame front position farther downstream due to the lower fuel concentration and the lower adiabatic flame temperature and subsequently lower turbulent flame speed. Flames operated at leaner equivalence ratios show a broader spatial fluctuation as the lean blow-out limit is approached and therefore are more susceptible to flow disturbances. In addition, because of a lower turbulent flame speed these flames stabilize farther downstream in a region with higher velocity fluctuations. This increases the fluctuation of the flame front. Flames with higher turbulence quantities (u′, LT) in the vicinity of the combustor inlet exhibited a shorter length and a higher calculated flame speed. An enhanced turbulent heat and mass transport from the recirculation zone to the flame root location due to an intensified mixing which might increase the preheating temperature or the radical concentration is believed to be the reason for that.


2019 ◽  
Vol 489 (1) ◽  
pp. 36-51 ◽  
Author(s):  
E P Hicks

ABSTRACT Rayleigh–Taylor (RT) unstable flames are a key component of Type Ia and Iax supernovae explosions, but their complex hydrodynamics is still not well understood. These flames are affected not only by the RT instability, but also by the turbulence it generates. Both processes can increase the flame speed by stretching and wrinkling the flame. This makes it hard to choose a subgrid model for the flame speed in full star Type Ia or Iax simulations. Commonly used subgrid models get around this difficulty by assuming that either the RT instability or turbulence is dominant and sets the flame speed. In previous work, we evaluated the physical assumptions and predictive abilities of these two types of models by analysing a large parameter study of 3D direct numerical simulations of RT unstable flames. Surprisingly, we found that the flame dynamics is dominated by the RT instability and that RT unstable flames are very different from turbulent flames. In particular, RT unstable flames are thinner rather than thicker when turbulence is strong. In addition, none of the turbulent flame speed models adequately predicted the flame speed. We also showed that the RT flame speed model failed when the RT instability was strong, suggesting that geometrical burning effects also influence the flame speed. However, these results depended on simulations with Re ≲ 720. In this paper, we extend the parameter study to higher Reynolds number and show that the basic conclusions of our previous study still hold when the RT-generated turbulence is stronger.


Author(s):  
David Beerer ◽  
Vincent McDonell ◽  
Peter Therkelsen ◽  
Robert K. Cheng

This paper reports flashback limits and turbulent flame local displacement speed measurements in flames stabilized by a low swirl injector operated at elevated pressures and inlet temperatures with hydrogen and methane blended fuels. The goal of this study is to understand the physics that relate turbulent flame speed to flashback events at conditions relevant to gas turbine engines. Testing was conducted in an optically accessible single nozzle combustor rig at pressures ranging from 1 to 8 atm, inlet temperatures from 290 to 600 K, and inlet bulk velocities between 20 and 60 m/s for natural gas and a 90%/10% (by volume) hydrogen/methane blend. The propensity of flashback is dependent upon the proximity of the lifted flame to the nozzle that is itself dependent upon pressure, inlet temperature, and bulk velocity. Flashback occurs when the leading edge of the flame in the core of the flow ingresses within the nozzle, even in cases when the flame is attached to the burner rim. In general the adiabatic flame temperature at flashback is proportional to the bulk velocity and inlet temperature and inversely proportional to the pressure. The unburned reactant velocity field approaching the flame was measured using a laser Doppler velocimeter with water seeding. Turbulent displacement flame speeds were found to be linearly proportional to the root mean square of the velocity fluctuations about the mean velocity. For identical inlet conditions, high-hydrogen flames had a turbulent flame local displacement speed roughly twice that of natural gas flames. Pressure, inlet temperature, and flame temperature had surprisingly little effect on the local displacement turbulent flame speed. However, the flow field is affected by changes in inlet conditions and is the link between turbulent flame speed, flame position, and flashback propensity.


Author(s):  
S. Daniele ◽  
P. Jansohn ◽  
K. Boulouchos

Nowadays, the establishment of IGCC (integrated gasification combined cycle) plants, prompts a growing interest in synthetic fuels for gas turbine based power generation. This interest has as direct consequence the need for understanding of flashback phenomena for premixed systems operated with H2-rich gases. This is due to the different properties of H2 (e.g. reactivity and diffusivity) with respect to CH4 which lead to higher flame speeds in the case of syngases (mixtures of H2-CO). This paper presents the results of experiments at gas turbine like conditions (pressure up to 15 bar, 0.2 < Φ < 0.7, 577K < T0 < 674K) aimed to determine flashback limits and their dependence on the combustion parameters (pressure, inlet temperature and inlet velocity). For the experimental facility used for this work the back propagation of the flame is believed to happen into the boundary layer of the fuel/air duct. Flashback propensity was found to have an appreciable dependence on pressure and inlet temperature while the effects of inlet velocity variations are weak. Explanations for the dependence on these three parameters, based on consideration on laminar and turbulent flame speed data (from modeling and experiments), are proposed. Within the frame of this work, in order to avoid major damages, the experimental facility was equipped with an automatic control system for flashback described in the paper. The control system is able to detect flame propagation into the fuel/air supply, arrest it and restore safe operating conditions by moving the flame out of the fuel/air section without blowing it out. This avoids destruction of components (burner/mixing) and time consuming shut downs of the test rig.


Author(s):  
Tadej Holler ◽  
Varun Jain ◽  
Ed M. J. Komen ◽  
Ivo Kljenak

The CFD combustion modeling approach based on two combustion models was applied to a hydrogen deflagration experiment conducted in a large-scale confined experimental vessel. The used combustion models were Zimont’s Turbulent Flames Speed Closure (TFC) model and Lipatnikov’s Flame Speed Closure (FSC) model. The conducted simulations are aimed to aid identifying and evaluating the potential hydrogen risks in Nuclear Power Plant (NPP) containment. The simulation results show good agreement with experiment for axial flame propagation using the Lipatnikov combustion model. However substantial overprediction in radial flame propagation is observed using both combustion models, which consequently results also in overprediction of the pressure increase rate and overall combustion energy output. As assumed for a large-scale experiment without any turbulence inducing structures, the combustion took place in low-turbulence regimes, where the Lipatnikov combustion model, due to its inclusion of quasi-laminar source term, has advantage over the Zimont model.


Author(s):  
A. N. Mazas ◽  
D. A. Lacoste ◽  
T. Schuller

The effects of CO2 and H2O addition on premixed oxy-fuel combustion are investigated with experiments and numerical simulations on the laminar flame speed of CH4/O2/CO2/H2O(v) and CH4/O2/N2/H2O(v) mixtures, at atmospheric pressure and for a reactants inlet temperature Tu = 373 K. Experiments are conducted with steady laminar conical premixed flames over a range of operating conditions representative of oxy-fuel combustion with flue gas recirculation. The relative O2-to-CO2 and O2-to-N2 ratios, respectively defined as O2/(O2+CO2) (mol.) and O2/(O2+N2) (mol.), are varied from 0.21 to 1.0. The equivalence ratio of the mixtures ranges from 0.5 to 1.5, and the steam molar fraction in the reactive mixture is varied from 0 to 0.45. Laminar flame speeds are measured with the flame area method using a Schlieren apparatus. Experiments are completed by simulations with the PREMIX code using the detailed kinetic mechanism GRI-mech. 3.0. Numerical predictions are found in good agreement with experimental data for all cases explored. It is also shown that the laminar flame speed of CH4/O2/N2 mixtures diluted with steam H2O(v) features a quasi-linear decrease when increasing the diluent molar fraction, even at high dilution rates. Effects of N2 replacement by CO2 in wet reactive mixtures are then investigated. A similar quasi-linear decrease of the flame speed is observed for CH4/O2/CO2 H2O-diluted flames. For a similar flame speed in dry conditions, results show a larger reduction of the burning velocity for CH4/O2/N2/H2O mixtures than for CH4/O2/CO2/H2O mixtures, when the steam molar fraction is increased. Finally, it is observed that the laminar flame speed of weakly (CO2, H2O)-diluted CH4/O2 mixtures is underestimated by the GRI-mech 3.0 predictions.


Sign in / Sign up

Export Citation Format

Share Document