Systematic study of ignition delay for jet fuels and diesel fuel in a heavy-duty diesel engine

2013 ◽  
Vol 34 (2) ◽  
pp. 3021-3029 ◽  
Author(s):  
David A. Rothamer ◽  
Lucas Murphy
Author(s):  
Praveen Kandulapati ◽  
Chuen-Sen Lin ◽  
Dennis Witmer ◽  
Thomas Johnson ◽  
Jack Schmid ◽  
...  

Synthetic fuels produced from non-petroleum based feedstocks can effectively replace the depleting petroleum based conventional fuels while significantly reducing the emissions. The zero sulfur content and the near zero percentage of aromatics in the synthetic fuels make them promising clean fuels to meet the upcoming emissions regulations. However due to their significantly different properties when compared to the conventional fuels; the existing engines must be tested extensively to study their performance with the new fuels. This paper reports a detailed in-cylinder pressure measurement based study made on adaptability of the engine control module (ECM) of a modern heavy duty diesel engine to optimize the engine performance with the F-T diesel fuel. During this study, the F-T and Conventional diesel fuels were tested at different loads and various injection timing changes made with respect to the manufacturer setting. Results from these tests showed that the ECM used significantly different injection timings for the two fuels in the process of optimizing the engine performance. For the same power output the ECM used a 2° advance in the injection timing with respect to the manufacturer setting at the full load and 1° retard at the no load condition. While the injection timings used by the ECM were same for both the fuels at the 50% load condition. However, a necessity for further changes in the control strategies used by the ECM were observed to get the expected advantages with the F-T fuels.


2011 ◽  
Vol 158 (3) ◽  
pp. 525-538 ◽  
Author(s):  
A.J. Donkerbroek ◽  
M.D. Boot ◽  
C.C.M. Luijten ◽  
N.J. Dam ◽  
J.J. ter Meulen

Author(s):  
Yu Zhang ◽  
Alexander Voice ◽  
Yuanjiang Pei ◽  
Michael Traver ◽  
David Cleary

Gasoline compression ignition (GCI) offers the potential to reduce criteria pollutants while achieving high fuel efficiency in heavy-duty diesel engines. This study aims to investigate the fuel chemical and physical properties effects on GCI operation in a heavy-duty diesel engine through closed-cycle, 3-D computational fluid dynamics (CFD) combustion simulations, investigating both mixing-controlled combustion (MCC) at 18.9 compression ratio (CR) and partially premixed combustion (PPC) at 17.3 CR. For this work, fuel chemical properties were studied in terms of the primary reference fuel (PRF) number (0–91) and the octane sensitivity (0–6) while using a fixed fuel physical surrogate. For the fuel physical properties effects investigation, PRF70 was used as the gas-phase chemical surrogate. Six physical properties were individually perturbed, varying from the gasoline to the diesel range. Combustion simulations were carried out at 1375 RPM and 10 bar brake mean effective pressure (BMEP). Reducing fuel reactivity (or increasing PRF number) was found to influence ignition delay time (IDT) more significantly for PPC than for MCC due to the lower charge temperature and higher EGR rate involved in the PPC mode. 0-D IDT calculations suggested that the fuel reactivity impact on IDT diminished with an increase in temperature. Moreover, higher reactivity gasolines exhibited stronger negative coefficient (NTC) behavior and their IDTs showed less sensitivity to temperature change. When exploring the octane sensitivity effect, ignition was found to occur in temperature conditions more relevant to the MON test. Therefore, increasing octane sensitivity (reducing MON) led to higher reactivity and shorter ignition delay. Under both MCC (TIVC: 385K) and PPC (TIVC: 353K), all six physical properties showed little meaningful impact on global combustion behavior, NOx and fuel efficiency. Among the physical properties investigated, only density showed a notable effect on soot emissions. Increasing density resulted in higher soot due to deteriorated air entrainment into the spray and the slower fuel-air mixing process. When further reducing the IVC temperature from 353K to 303K under PPC, the spray vaporization and fuel-air mixing were markedly slowed. Consequently, increasing the liquid fuel density created a more pronounced presence of fuel-rich and higher reactivity regions, thereby leading to an earlier onset of hot ignition and higher soot.


2019 ◽  
Vol 2 (1) ◽  

Ignition improver additives are used to improve the ignition quality, or reduce the ignition delay; i.e. the time between when fuel is injected and time when combustion start is different this difference in time is minimize by additive is called cetane improver (CN). The Cetane Number (CN) is the most widely accepted measure of ignition quality to get desired value of centane number some additive are used hence ignition improvers are usually characterized by the fact that at what extent they can increase CN. By increasing cetane number we have two benefits that it helps smoother combustion and lower emissions. Fuel properties are always considered as one of the main factors to diesel engines concerning performance of cetane improver. There are still challenges for researchers to identify the most correlating and non-correlating fuel properties and their effects on cetane improver .In this study to derive the most un-correlating and correlating properties. In parallel, sensitivity analysis was performed for the fuel properties as well as to effect on performance of cetane improver


Sign in / Sign up

Export Citation Format

Share Document