Flame geometry of downward buoyant turbulent jet fires under cross flows: Experiments, dimensional analysis and an integral model

Author(s):  
Hongyu Lu ◽  
Michael A. Delichatsios ◽  
Xin Li ◽  
Shixiang Liu ◽  
Jiang Lv ◽  
...  
Fuel ◽  
2022 ◽  
Vol 307 ◽  
pp. 121891
Author(s):  
Jiang Lv ◽  
Xiaolei Zhang ◽  
Shixiang Liu ◽  
Hongyu Lu ◽  
Yuxuan Ma ◽  
...  

Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 765 ◽  
Author(s):  
Fang ◽  
Chen ◽  
Xu ◽  
Otoo ◽  
Lu

The integral model developed by Chin (1988) for modelling a non-buoyant turbulent jet in wave environment is improved by introducing two new parameters, i.e., the jet spreading rate c1 and the shortening rate pe. The parameter c1 is used to simplify the model by explicitly describing the radial velocity and scalar profiles under the assumption of “instantaneous” Gaussian distribution. By doing so, the governing equations can be easily solved by simultaneously integrating the conservation laws of momentum and scalars across the jet cross-section. The parameter pe is used to shorten the initial length of zone of flow establishment (ZFE), so as to more accurately account for the wave effect on the jet initial dilution near the jet nozzle. The parameters are calibrated by the particle image velocimetry (PIV)-measured data from three groups of jet experiments, i.e., the group of vertical jet towards the wave direction (vertical jet), the group of horizontal jet along the wave direction (co-wave jet) and the group of horizontal jet opposing to the wave direction (op-wave jet). The results show that both parameters are well related to the ratio of jet and wave characteristic velocities in the same group, but it is not able to be generalized among different groups. Under the same wave condition, the value of c1 in the vertical jet is larger than that of the horizontal jets; while the value of pe in the vertical jet is smaller than that of the horizontal jets, which indicates that the jet has a faster decay rate of centerline velocity and a wider width of jet cross-section profile in the near field when it is vertically discharged into the wave environment. With the well-calibrated parameters, the improved model can achieve a higher accuracy than the original model developed by Chin (1988).


Author(s):  
S. Naka ◽  
R. Penelle ◽  
R. Valle

The in situ experimentation technique in HVEM seems to be particularly suitable to clarify the processes involved in recrystallization. The material under investigation was unidirectionally cold-rolled titanium of commercial purity. The problem was approached in two different ways. The three-dimensional analysis of textures was used to describe the texture evolution during the primary recrystallization. Observations of bulk-annealed specimens or thin foils annealed in the microscope were also made in order to provide information concerning the mechanisms involved in the formation of new grains. In contrast to the already published work on titanium, this investigation takes into consideration different values of the cold-work ratio, the temperature and the annealing time.Two different models are commonly used to explain the recrystallization textures i.e. the selective grain growth model (Beck) or the oriented nucleation model (Burgers). The three-dimensional analysis of both the rolling and recrystallization textures was performed to identify the mechanismsl involved in the recrystallization of titanium.


2009 ◽  
Author(s):  
Rumi Price ◽  
Gregory Widner ◽  
William True ◽  
Monica Matthieu

Sign in / Sign up

Export Citation Format

Share Document