scholarly journals The Coating Technology with the Wire Electrode

Procedia CIRP ◽  
2016 ◽  
Vol 42 ◽  
pp. 226-230 ◽  
Author(s):  
Takashi Mitsuyasu ◽  
Keisuke Tasaki ◽  
Masatoshi Kawano
2012 ◽  
Vol 576 ◽  
pp. 527-530
Author(s):  
Mohammad Yeakub Ali ◽  
W.Y.H. Liew ◽  
S.A. Gure ◽  
B. Asfana

This paper presents the estimation of kerf width in micro wire electrical discharge machining (micro WEDM) in terms of machining parameters of capacitance and gap voltage. An empirical model is developed by the analysis of variance (ANOVA) of experimental data. Using a wire electrode of 70 µm diameter, a minimum kerf width is found to be 92 µm for the micro WEDM parameters of 0.01 µF capacitance and 90.25 V gap voltage. Around 30% increament of the kerf is found to be high. The analysis also revealed that the capacitance is more influential parameter than gap voltage on kerf width produced by micro WEDM. As the gap voltage determines the breakdown distance and affects the wire vibration, the wire vibration factor is to be considered in the analysis and in formulation of model in future study.


Author(s):  
Victor Bokov ◽  
◽  
Oleh Sisa ◽  
Vasyl Yuryev ◽  
◽  
...  

In modern mechanical engineering, electrical discharge machining (EDM) methods are widely used for machining bodies of rotation from difficult-to-machine materials. Those methods ensure sparing cutting and make it possible to machine any electrically conductive material irrespective of its physical and chemical properties, in particular hardness. There is a known method for dimensional machining of bodies of rotation with electric arc using a wire electrode tool that is pulled along in the machining area thus "compensating" for that tool's EDM wear and tear. The machining accuracy is therefore significantly heightened. However, when implementing this method, an effect of splashing the working fluid outside the working area of the machine and a pronounced luminous effect from the burning of the electric arc in the machining area are observed. That worsens the working conditions. In addition, when pulling the wire electrode tool along the convex surface of the electrode holder, the sliding friction arises, which eventually leads to mechanical destruction of the contact point. As a result, a deep kerf is formed on the electrode holder. When the depth of the kerf reaches the diameter of the wire electrode tool, the destruction of the electrode holder by the electric arc begins. Consequently, the durability of the electrode holder in the known method is unsatisfactory. A method of dimensional machining of bodies of rotation with electric arc using a wire electrode tool with the immersion of the machining area in the working fluid has been proposed, which makes it possible to improve the working conditions of the operator by eliminating the effect of fluid splashing and removing the luminous effect of arc burning in the machining area. In addition, it has been proposed to make the electrode holder in the form of a roller that rotates with a guide groove for the wire electrode tool, while the nozzle for creating the transverse hydrodynamic fluid flow has been proposed to be mounted in a separate fixed housing that is adjacent to the electrode holder. This technical solution replaces the sliding friction with the rolling one thus enhancing the durability of the electrode holder. Mathematical models of the process characteristics of the DMA-process (dimensional machining with electric arc) for bodies of rotation using a wire electrode tool with the immersion of the machining area in the working fluid have been obtained that make it possible to control the machining productivity, the specific machining productivity, the specific electric power consumption, and the roughness of the surface machined.


Machines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 69
Author(s):  
Laurenţiu Slătineanu ◽  
Oana Dodun ◽  
Margareta Coteaţă ◽  
Gheorghe Nagîţ ◽  
Irina Beşliu Băncescu ◽  
...  

Wire electrical discharge machining has appeared mainly in response to the need for detachment with sufficiently high accuracy of parts of plate-type workpieces. The improvements introduced later allowed the extension of this machining technology to obtain more complex ruled surfaces with increasingly high requirements regarding the quality of the machined surfaces and the productivity of the wire electrical discharge machining process. Therefore, it was normal for researchers to be interested in developing more and more in-depth investigations into the various aspects of wire electrical discharge machining. These studies focused first on improving the machining equipment, wire electrodes, and the devices used to position the clamping of a wire electrode and workpiece. A second objective pursued was determining the most suitable conditions for developing the machining process for certain proper situations. As output parameters, the machining productivity, the accuracy, and roughness of the machined surfaces, the wear of the wire electrode, and the changes generated in the surface layer obtained by machining were taken into account. There is a large number of scientific papers that have addressed issues related to wire electrical discharge machining. The authors aimed to reveal the aspects that characterize the process, phenomena, performances, and evolution trends specific to the wire electrical discharge machining processes, as they result from scientific works published mainly in the last two decades.


2010 ◽  
Vol 643 ◽  
pp. 15-18
Author(s):  
Júlio Cesar Santos ◽  
Antunes Andre Da Silva ◽  
Afonso Paulo Monteiro Pinheiro ◽  
Leonardo Kyo Kabayama ◽  
Odair Doná Rigo ◽  
...  

The rocket propellant ignition system uses electro-explosive device actuated by wire electrode. Those wires are usually made by Fe-Ni based alloy with controlled thermal expansion inserted into a ceramic feed-through and are connected to thin resistive wire which is heated through the passage of an electrical current for propellant ignition. The contact between ceramic feed-through and wires should be reliable since sometimes it could fail. A novel alternative process is to use SMA wires taking into account the shape recovery effect constraining the wire inside the feed-through. The recovery stress of 326 MPa for 4% pre-strain should be enough to constrain the wire inside the feed-trough avoiding the gas leakage.


2010 ◽  
Vol 37-38 ◽  
pp. 146-149
Author(s):  
Li Jun Yang ◽  
Xi Nan Dang

This paper introduced some current researches on the corner error in WEDM and put forward the factors that have an influence on the corner error. The deflection of the wire-electrode that has been caused by discharge force, feeding directions of the wire-electrode and radial flops of the guide pulley was analyzed in detail. To minimize corner errors, the energy control strategy and the trace control strategy are presented. Especially in WEDM-HS processing, the methods improving the processing precision are given as follows: Using the over-cutting and retract program, controlling the wire-electrode tension and improving the guiding and allocation parts.


2013 ◽  
Vol 395-396 ◽  
pp. 1053-1056 ◽  
Author(s):  
Peng Sun

The effect of the lateral vibration of the electrode wire on machining gap of CNC was analyzed. Then the vibration mathematical model of the wire electrode was established, and the influence of various parameters on the vibration and machining gap was revealed. Taking 1 mm wire as example, the influence low of the parameters on vibration of wire electrode was obtained. It shows that the vibration model is correct, to provide a reference for optimizing the machining gap of CNC.


2021 ◽  
Author(s):  
Cong Deng ◽  
Zhidong Liu ◽  
Ming Zhang ◽  
Hongwei Pan ◽  
Mingbo Qiu

Abstract Surface machined by high-speed wire electrical discharge machining (HS-WEDM) at super-high thickness (more than 1000 mm) cutting suffers from uneven surface, a major problem that has been investigated in this paper. According to the analysis, as wire frame span increases, the rigidity of the wire electrode decreases, and under the action of discharge explosive force, wire electrode vibration intensifies. As a result, the machining stability inevitably decreases. However, the core problem is whether there is enough working fluid in the slit to dampen and absorb the vibration of the wire electrode so as to ensure the positional stability of the wire electrode. To verify the above point of view: first, the wire guide and gravity take-up with bidirectional tension in the wire feeding system were installed to improve the positional accuracy of the wire electrode; second, to improve the flow of the working fluid into the slit, the slit width was increased by improving the working fluid and a medium carrier with a higher melting point and vaporization point can reduce the vaporization of the working fluid in the slit as much as possible. The experiment showed that the outlet flow of the improved working fluid is 56.72% higher than that of the original working fluid when cutting a 750 mm thick workpiece, which increases the damping and vibration absorption effect of the working fluid on the wire electrode in the long and narrow gap. After the above measures were implemented, super-high thickness cutting can be carried out continuously and steadily, the surface evenness was significantly improved, and the workpiece with a thickness of 2000 mm was cut successfully.


Sign in / Sign up

Export Citation Format

Share Document