scholarly journals Topology Optimization to Reduce the Stress Shielding Effect for Orthopedic Applications

Procedia CIRP ◽  
2017 ◽  
Vol 65 ◽  
pp. 202-206 ◽  
Author(s):  
Abdulsalam A. Al-Tamimi ◽  
Chris Peach ◽  
Paulo Rui Fernandes ◽  
Akos Cseke ◽  
Paulo J.D.S. Bartolo
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jun Sun ◽  
Qiuan Wang ◽  
Dazhao Cai ◽  
Wenxiang Gu ◽  
Yiming Ma ◽  
...  

Abstract Background In current clinical practice, the most commonly used fusion cage materials are titanium (Ti) alloys. However, titanium alloys are non-degradable and may cause stress shielding. ZK60 is a bio-absorbable implant that can effectively avoid long-term complications, such as stress shielding effects, implant displacement, and foreign body reactions. In this study, we aimed at investigating the biomechanical behavior of the cervical spine after implanting different interbody fusion cages. Methods The finite element (FE) models of anterior cervical disc removal and bone graft fusion (ACDF) with a ZK60 cage and a Ti cage were constructed, respectively. Simulations were performed to evaluate their properties of flexion, extension, lateral bending, and axial rotation of the cervical spine. Moreover, a side-by-side comparison was conducted on the range of motion (ROM), the deformation of cages, the stress in the cages, bone grafts, and cage-end plate interface. Simultaneously, according to the biomechanical analysis results, the microporous structure of the ZK60 cage was improved by the lattice topology optimization technology and validation using static structure. Results The ROMs in the current study were comparable with the results reported in the literature. There was no significant difference in the deformation of the two cages under various conditions. Moreover, the maximum stress occurred at the rear of the cage in all cases. The cage’s and endplate-cage interface’s stress of the ZK60 group was reduced compared with the Ti cage, while the bone graft stress in the ZK60 fusion cage was significantly greater than that in the Ti fusion cage (average 27.70%). We further optimized the cage by filling it with lattice structures, the volume was decreased by 40%, and validation showed more significant biomechanical properties than ZK60 and Ti cages. Conclusion The application of the ZK60 cage can significantly increase the stress stimulation to the bone graft by reducing the stress shielding effect between the two instrumented bodies. We also observed that the stress of the endplate-cage interface decreased as the reduction of the cage’s stiffness, indicating that subsidence is less likely to occur in the cage with lower stiffness. Moreover, we successfully designed a porous cage based on the biomechanical load by lattice optimization.


2020 ◽  
Author(s):  
Jun Sun ◽  
Qiuan Wang ◽  
Dazhao Cai ◽  
Wenxiang Gu ◽  
Yiming Ma ◽  
...  

Abstract Background In current clinical practice, the most commonly used fusion cage materials are titanium (Ti) alloys. However, titanium alloys are non-degradable and may cause stress shielding. ZK60 is a bio-absorbable implant that can effectively avoid long-term complications, such as stress shielding effects, implant displacement, and foreign body reactions. In this study, we aimed at investigating the biomechanical behavior of the cervical spine after implanting different interbody fusion cages.Methods The finite element (FE) models of anterior cervical disc removal and bone graft fusion (ACDF) with a ZK60 cage and a Ti cage were constructed, respectively. Simulations were performed to evaluate their properties of flexion, extension, lateral bending, and axial rotation of the cervical spine. Moreover, a side-by-side comparison was conducted on the range of motion (ROM), the deformation of cages, the stress in the cages, bone grafts, and cage-end plate interface. Simultaneously, according to the results of biomechanical analysis, the microporous structure of the ZK60 cage was improved by the lattice topology optimization technology and validation using static structure.Results The ROMs in the current study were comparable with the results reported in the literature. There was no significant difference in the deformation of the two cages under various conditions. Moreover, the maximum stress occurred at the rear of the cage in all cases. The cage's and endplate-cage interface's stress of the ZK60 group was reduced compared with the Ti cage, while the bone graft stress in the ZK60 fusion cage was significantly greater than that in the Ti fusion cage (average 27.70%). We further optimized the cage by filling with lattice structures, the volume was decreased by 40%, and validation showed more significant biomechanical properties than ZK60 and Ti cages.Conclusion The application of the ZK60 cage can significantly increase the stress stimulation to the bone graft by reducing the stress shielding effect between the two instrumented bodies. We also observed that the stress of the endplate-cage interface decreased as the reduction of the cage's stiffness, indicating that subsidence is less likely to occur in the cage with lower stiffness. Moreover, we successfully designed a porous cage on the basis of the biomechanical load by lattice optimization.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 1245-1252
Author(s):  
Hongwei Wang ◽  
Yi Wan ◽  
Xinyu Liu ◽  
Zhanqiang Liu ◽  
Xiao Zhang ◽  
...  

Fusion cage has been used in lumbar fusion procedure to treat degenerative disc disorders for decades. To address the drawback of Titanium (Ti) and polyetheretherketone (PEEK) cage, a combination Ti/PEEK cage was proposed in present study. Topology optimization was performed to tailor the topological structure of Ti/PEEK cage. The biomechanical performance was comprehensively assessed using finite element method under simulated physiological load conditions. The volume of optimized cage was reduced by 9.7%. The increased volume for bone graft might improve the fusion performance. The lower peak stress was observed on superior and inferior bone endplates of Ti/PEEK cage model, which reduced the risk of cage subsidence. Meanwhile, Ti/PEEK cage effectively reduced the stress shielding effect associated with over-stiffness of Ti cage. In conclusion, the combination Ti/PEEK cage might be a better choice for fusion surgery in relation to Ti or PEEK cage.


Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 307
Author(s):  
Cheng-Tang Pan ◽  
Che-Hsin Lin ◽  
Ya-Kang Huang ◽  
Jason S. C. Jang ◽  
Hsuan-Kai Lin ◽  
...  

Intervertebral fusion surgery for spinal trauma, degeneration, and deformity correction is a major vertebral reconstruction operation. For most cages, the stiffness of the cage is high enough to cause stress concentration, leading to a stress shielding effect between the vertebral bones and the cages. The stress shielding effect affects the outcome after the reconstruction surgery, easily causing damage and leading to a higher risk of reoperation. A porous structure for the spinal fusion cage can effectively reduce the stiffness to obtain more comparative strength for the surrounding tissue. In this study, an intervertebral cage with a porous gradation structure was designed for Ti64ELI alloy powders bonded by the selective laser melting (SLM) process. The medical imaging software InVesalius and 3D surface reconstruction software Geomagic Studio 12 (Raindrop Geomagic Inc., Morrisville, NC, USA) were utilized to establish the vertebra model, and ANSYS Workbench 16 (Ansys Inc, Canonsburg, PA, USA) simulation software was used to simulate the stress and strain of the motions including vertical body-weighted compression, flexion, extension, lateral bending, and rotation. The intervertebral cage with a hollow cylinder had porosity values of 80–70–60–70–80% (from center to both top side and bottom side) and had porosity values of 60–70–80 (from outside to inside). In addition, according to the contact areas between the vertebras and cages, the shape of the cages can be custom-designed. The cages underwent fatigue tests by following ASTM F2077-17. Then, mechanical property simulations of the cages were conducted for a comparison with the commercially available cages from three companies: Zimmer (Zimmer Biomet Holdings, Inc., Warsaw, IN, USA), Ulrich (Germany), and B. Braun (Germany). The results show that the stress and strain distribution of the cages are consistent with the ones of human bone, and show a uniform stress distribution, which can reduce stress concentration.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 791
Author(s):  
Muzamil Hussain ◽  
Syed Hasan Askari Rizvi ◽  
Naseem Abbas ◽  
Uzair Sajjad ◽  
Muhammad Rizwan Shad ◽  
...  

Titanium, stainless steel, and CoCrMo alloys are the most widely used biomaterials for orthopedic applications. The most common causes of orthopedic implant failure after implantation are infections, inflammatory response, least corrosion resistance, mismatch in elastic modulus, stress shielding, and excessive wear. To address the problems associated with implant materials, different modifications related to design, materials, and surface have been developed. Among the different methods, coating is an effective method to improve the performance of implant materials. In this article, a comprehensive review of recent studies has been carried out to summarize the impact of coating materials on metallic implants. The antibacterial characteristics, biodegradability, biocompatibility, corrosion behavior, and mechanical properties for performance evaluation are briefly summarized. Different effective coating techniques, coating materials, and additives have been summarized. The results are useful to produce the coating with optimized properties.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2059
Author(s):  
Piotr Prochor ◽  
Żaneta Anna Mierzejewska

In recent years, scientists have defined two main paths for orthopedic implant fabrication: searching for new materials with properties closest to natural bone in order to reduce the stress-shielding effect or creating individually adapted geometry of the implant with the use and Rapid Prototyping methods. Therefore, materials such as PEEK GRF30 and Ti6Al4V selective laser melting (SLM) are of interest. They are defined as materials suitable for implants, however, the knowledge of their bioactivity, a feature which is one of the most desirable properties of biomaterials, is still insufficient. Using Simulated Body Fluid and Hank’s Balanced Salt Solution, the bioactivity of PEEK GRF30 and Ti6Al4V SLM was assessed, as well as commercial Ti6Al4V as a reference material. Ten cylindrical samples of each material were prepared and immersed in solutions per period from 2 to 28 days at 37 °C. Optical analysis of the changes on the examined surfaces suggested that right after 2-day crystals with different morphologies were formed on each material. Further analysis of the chemical composition of the altered surfaces confirmed the formation of a calcium phosphate layer on them, however, the Ca/P ratio was slightly different from 1.67. On the basis of the obtained results, it can be concluded that both PEEK GRF30 and Ti6Al4V SLM are characterized by appropriate—comparable to Ti6Al4V—bioactivity.


2018 ◽  
Vol 5 (5) ◽  
pp. 13267-13275 ◽  
Author(s):  
Emon Barua ◽  
Saurav Das ◽  
Ashish B. Deoghare

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Jianping Shi ◽  
Huixin Liang ◽  
Jie Jiang ◽  
Wenlai Tang ◽  
Jiquan Yang

Implant parts prepared by traditional design and manufacturing methods generally have problems of high stiffness and heavy self-weight, which may cause stress shielding effect between the implanted part and the host bone, and eventually cause loosening of the implanted part. Based on the implicit surface function equations, several porous implant models with controlled pore structure were designed. By adjusting the parameters, the apparent elastic modulus of the porous implant model can be regulated. The biomechanical simulation experiment was performed using CAE software to simulate the stress and elastic modulus of the designed models. The experimental results show that the apparent elastic modulus of the porous structure scaffold is close to that of the bone tissue, which can effectively reduce the stress shielding effect. In addition, the osseointegration status between the implant and the host bone was analyzed by implant experiment. The pushout test results show that the designed porous structures have a good osseointegration effect.


Sign in / Sign up

Export Citation Format

Share Document