scholarly journals Quality Prediction of Honed Bores with Machine Learning Based on Machining and Quality Data to Improve the Honing Process Control

Procedia CIRP ◽  
2020 ◽  
Vol 93 ◽  
pp. 1322-1327
Author(s):  
Sven Klein ◽  
Sebastian Schorr ◽  
Dirk Bähre
Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3262
Author(s):  
Jianlong Xu ◽  
Zhuo Xu ◽  
Jianjun Kuang ◽  
Che Lin ◽  
Lianghong Xiao ◽  
...  

Water quality monitoring plays a vital role in the water environment management, while efficient monitoring provides direction and verification of the effectiveness of water management. Traditional water quality monitoring for a variety of water parameters requires the placement of multiple sensors, and some water quality data (e.g., total nitrogen (TN)) requires testing instruments or laboratory analysis to obtain results, which takes longer than the sensors. In this paper, we designed a water quality prediction framework, which uses available water quality variables (e.g., temperature, pH, conductivity, etc.) to predict total nitrogen concentrations in inland water bodies. The framework was also used to predict nearshore seawater salinity and temperature using remote sensing bands. We conducted experiments on real water quality datasets and random forest was chosen to be the core algorithm of the framework by comparing and analyzing the performance of different machine learning algorithms. The results show that among all tested machine learning models, random forest performs the best. The data prediction error rate of the random forest model in predicting the total nitrogen concentration in inland rivers was 4.9%. Moreover, to explore the prediction effect of random forest algorithm when the independent variable is non-water quality data, we took the reflectance of remote sensing bands as the independent variables and successfully inverted the salinity distribution of Shenzhen Bay in the Google Earth Engine (GEE) platform. According to the experimental results, the random forest-based water quality prediction framework can achieve 92.94% accuracy in predicting the salinity of nearshore waters.


2021 ◽  
Vol 40 (5) ◽  
pp. 9361-9382 ◽  
Author(s):  
Naeem Iqbal ◽  
Rashid Ahmad ◽  
Faisal Jamil ◽  
Do-Hyeun Kim

Quality prediction plays an essential role in the business outcome of the product. Due to the business interest of the concept, it has extensively been studied in the last few years. Advancement in machine learning (ML) techniques and with the advent of robust and sophisticated ML algorithms, it is required to analyze the factors influencing the success of the movies. This paper presents a hybrid features prediction model based on pre-released and social media data features using multiple ML techniques to predict the quality of the pre-released movies for effective business resource planning. This study aims to integrate pre-released and social media data features to form a hybrid features-based movie quality prediction (MQP) model. The proposed model comprises of two different experimental models; (i) predict movies quality using the original set of features and (ii) develop a subset of features based on principle component analysis technique to predict movies success class. This work employ and implement different ML-based classification models, such as Decision Tree (DT), Support Vector Machines with the linear and quadratic kernel (L-SVM and Q-SVM), Logistic Regression (LR), Bagged Tree (BT) and Boosted Tree (BOT), to predict the quality of the movies. Different performance measures are utilized to evaluate the performance of the proposed ML-based classification models, such as Accuracy (AC), Precision (PR), Recall (RE), and F-Measure (FM). The experimental results reveal that BT and BOT classifiers performed accurately and produced high accuracy compared to other classifiers, such as DT, LR, LSVM, and Q-SVM. The BT and BOT classifiers achieved an accuracy of 90.1% and 89.7%, which shows an efficiency of the proposed MQP model compared to other state-of-art- techniques. The proposed work is also compared with existing prediction models, and experimental results indicate that the proposed MQP model performed slightly better compared to other models. The experimental results will help the movies industry to formulate business resources effectively, such as investment, number of screens, and release date planning, etc.


2021 ◽  
Vol 2010 (1) ◽  
pp. 012011
Author(s):  
Zhongjie Fu ◽  
Haiping Lin ◽  
Bingqiang Huang ◽  
Jiana Yao

2021 ◽  
Author(s):  
Jack Woollam ◽  
Jannes Münchmeyer ◽  
Carlo Giunchi ◽  
Dario Jozinovic ◽  
Tobias Diehl ◽  
...  

<p>Machine learning methods have seen widespread adoption within the seismological community in recent years due to their ability to effectively process large amounts of data, while equalling or surpassing the performance of human analysts or classic algorithms. In the wider machine learning world, for example in imaging applications, the open availability of extensive high-quality datasets for training, validation, and the benchmarking of competing algorithms is seen as a vital ingredient to the rapid progress observed throughout the last decade. Within seismology, vast catalogues of labelled data are readily available, but collecting the waveform data for millions of records and assessing the quality of training examples is a time-consuming, tedious process. The natural variability in source processes and seismic wave propagation also presents a critical problem during training. The performance of models trained on different regions, distance and magnitude ranges are not easily comparable. The inability to easily compare and contrast state-of-the-art machine learning-based detection techniques on varying seismic data sets is currently a barrier to further progress within this emerging field. We present SeisBench, an extensible open-source framework for training, benchmarking, and applying machine learning algorithms. SeisBench provides access to various benchmark data sets and models from literature, along with pre-trained model weights, through a unified API. Built to be extensible, and modular, SeisBench allows for the simple addition of new models and data sets, which can be easily interchanged with existing pre-trained models and benchmark data. Standardising the access of varying quality data, and metadata simplifies comparison workflows, enabling the development of more robust machine learning algorithms. We initially focus on phase detection, identification and picking, but the framework is designed to be extended for other purposes, for example direct estimation of event parameters. Users will be able to contribute their own benchmarks and (trained) models. In the future, it will thus be much easier to compare both the performance of new algorithms against published machine learning models/architectures and to check the performance of established algorithms against new data sets. We hope that the ease of validation and inter-model comparison enabled by SeisBench will serve as a catalyst for the development of the next generation of machine learning techniques within the seismological community. The SeisBench source code will be published with an open license and explicitly encourages community involvement.</p>


2021 ◽  
Author(s):  
Min-Hsuan Hsu ◽  
Chih-Chen Lin ◽  
Hsiang-Meng Yu ◽  
Kuang-Wei Chen ◽  
Tuung Luoh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document