scholarly journals Dispersion of Love Wave in a Heterogeneous Orthotropic Layer Under Compressive Pre-Stress Lying Over an Isotropic Elastic Half-space With Rectangular Irregularity

2017 ◽  
Vol 115 ◽  
pp. 22-29
Author(s):  
Ratan Mani Prasad ◽  
Santimoy Kundu
2013 ◽  
Vol 325-326 ◽  
pp. 252-255
Author(s):  
Li Gang Zhang ◽  
Hong Zhu ◽  
Hong Biao Xie ◽  
Jian Wang

This work addresses the dispersion of Love wave in an isotropic homogeneous elastic half-space covered with a functionally graded layer. First, the general dispersion equations are given. Then, the approximation analytical solutions of displacement, stress and the general dispersion relations of Love wave in both media are derived by the WKBJ approximation method. The solutions are checked against numerical calculations taking an example of functionally graded layer with exponentially varying shear modulus and density along the thickness direction. The dispersion curves obtained show that a cut-off frequency arises in the lowest order vibration model.


2014 ◽  
Vol 231 ◽  
pp. 93-99 ◽  
Author(s):  
Hong Zhu ◽  
Ligang Zhang ◽  
Jiecai Han ◽  
Yumin Zhang

2015 ◽  
Vol 11 (3) ◽  
pp. 386-400 ◽  
Author(s):  
Rajneesh Kakar

Purpose – The purpose of this paper is to investigate the existence of SH-waves in fiber-reinforced layer placed over a heterogeneous elastic half-space. Design/methodology/approach – The heterogeneity of the elastic half-space is caused by the exponential variations of density and rigidity. As a special case when both the layers are homogeneous, the derived equation is in agreement with the general equation of Love wave. Findings – Numerically, it is observed that the velocity of SH-waves decreases with the increase of heterogeneity and reinforced parameters. The dimensionless phase velocity of SH-waves increases with the decreases of dimensionless wave number and shown through figures. Originality/value – In this work, SH-wave in a fiber-reinforced anisotropic medium overlying a heterogeneous gravitational half-space has been investigated analytically and numerically. The dispersion equation for the propagation of SH-waves has been observed in terms of Whittaker function and its derivative of second degree order. It has been observed that on the removal of heterogeneity of half-space, and reinforced parameters of the layer, the derived dispersion equation reduces to Love wave dispersion equation thereby validates the solution of the problem. The equation of propagation of Love wave in fiber-reinforced medium over a heterogeneous half-space given by relevant authors is also reduced from the obtained dispersion relation under the considered geometry.


2016 ◽  
Vol 208 (3) ◽  
pp. 1305-1307 ◽  
Author(s):  
K. Ranjith

Abstract It is shown that a slip wave solution exists for antiplane sliding of an elastic layer on an elastic half-space. It is a companion solution to the well-known Love wave solution.


2015 ◽  
Vol 45 (1) ◽  
pp. 69-86 ◽  
Author(s):  
Li Li ◽  
P. J. Wei

Abstract The propagation behaviour of Love wave in an initially stressed functionally graded magnetic-electric-elastic half-space carrying a homogeneous layer is investigated. The material parameters in the substrate are assumed to vary exponentially along the thickness direction only. The velocity equations of Love wave are derived on the electrically or magnetically open circuit and short circuit boundary conditions, based on the equations of motion of the graded magnetic-electric-elastic mate- rial with the initial stresses and the free traction boundary conditions of surface and the continuous boundary conditions of interface. The dispersive curves are obtained numerically and the influences of the initial stresses and the material gradient index on the dispersive curves are dis- cussed. The investigation provides a basis for the development of new functionally graded magneto-electro-elastic surface wave devices.


2015 ◽  
Vol 37 (4) ◽  
pp. 303-315 ◽  
Author(s):  
Pham Chi Vinh ◽  
Nguyen Thi Khanh Linh ◽  
Vu Thi Ngoc Anh

This paper presents  a technique by which the transfer matrix in explicit form of an orthotropic layer can be easily obtained. This transfer matrix is applicable for both the wave propagation problem and the reflection/transmission problem. The obtained transfer matrix is then employed to derive the explicit secular equation of Rayleigh waves propagating in an orthotropic half-space coated by an orthotropic layer of arbitrary thickness.


Sign in / Sign up

Export Citation Format

Share Document