scholarly journals A Real-Time Lazy Eye Correction Method for Low Cost Webcams

2019 ◽  
Vol 159 ◽  
pp. 281-290 ◽  
Author(s):  
Robert Kerr ◽  
Muhammad Marwan Muhammad Fuad
2020 ◽  
Vol 17 (3) ◽  
pp. 867-890
Author(s):  
Jun-Hee Choi ◽  
Hyun-Sug Cho

The gravimetric method, which is mainly used among particulate matter (PM) measurement methods, includes the disadvantages that it cannot measure PM in real time and it requires expensive equipment. To overcome these disadvantages, we have developed a light scattering type PM sensor that can be manufactured at low cost and can measure PM in real time. We have built a big data system that can systematically store and analyze the data collected through the developed sensor, as well as an environment where PM states can be monitored mobile in real time using such data. In addition, additional studies were conducted to analyze and correct the collected big data to overcome the problem of low accuracy, which is a disadvantage of the light scattering type PM sensor. We used a linear correction method and proceeded to adopt the most suitable value based on error and accuracy.


2009 ◽  
Vol E92-D (1) ◽  
pp. 97-101
Author(s):  
Dongil HAN ◽  
Hak-Sung LEE ◽  
Chan IM ◽  
Seong Joon YOO

CONVERTER ◽  
2021 ◽  
pp. 86-93
Author(s):  
Xu Chen, Kuan He, Yuntong Liu

UAV aerial remote sensing system has the characteristics of strong real-time, flexible, high image resolution and low cost, which can be applied to map mapping tasks under various terrain. In this paper, the key technology of UAV Remote Sensing Surveying and mapping, the process of image processing, the research of mosaic method and the field application of remote sensing technology are studied. Aiming at the characteristics of UAV image with high resolution and small image frame, three methods of image map making are proposed, namely, single image geometric correction method, mosaic correction method and aerial triangulation method. This paper focuses on the key technical problems of the three methods, and makes a comprehensive analysis and experimental verification of each method from the aspects of mapping effect, accuracy and efficiency. The experimental results show that the UAV remote sensing technology can meet the real-time basic surveying and mapping data requirements of urban mapping. This method can meet the needs of 1:500 high-precision mapping. The system can reduce the cost and improve the usability when it is used to update the basic data of Urban Surveying and mapping.


Author(s):  
Gabriel de Almeida Souza ◽  
Larissa Barbosa ◽  
Glênio Ramalho ◽  
Alexandre Zuquete Guarato

2007 ◽  
Author(s):  
R. E. Crosbie ◽  
J. J. Zenor ◽  
R. Bednar ◽  
D. Word ◽  
N. G. Hingorani

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Yong He ◽  
Hong Zeng ◽  
Yangyang Fan ◽  
Shuaisheng Ji ◽  
Jianjian Wu

In this paper, we proposed an approach to detect oilseed rape pests based on deep learning, which improves the mean average precision (mAP) to 77.14%; the result increased by 9.7% with the original model. We adopt this model to mobile platform to let every farmer able to use this program, which will diagnose pests in real time and provide suggestions on pest controlling. We designed an oilseed rape pest imaging database with 12 typical oilseed rape pests and compared the performance of five models, SSD w/Inception is chosen as the optimal model. Moreover, for the purpose of the high mAP, we have used data augmentation (DA) and added a dropout layer. The experiments are performed on the Android application we developed, and the result shows that our approach surpasses the original model obviously and is helpful for integrated pest management. This application has improved environmental adaptability, response speed, and accuracy by contrast with the past works and has the advantage of low cost and simple operation, which are suitable for the pest monitoring mission of drones and Internet of Things (IoT).


HardwareX ◽  
2021 ◽  
pp. e00203
Author(s):  
André Broekman ◽  
Petrus Johannes Gräbe

2021 ◽  
Vol 11 (11) ◽  
pp. 4940
Author(s):  
Jinsoo Kim ◽  
Jeongho Cho

The field of research related to video data has difficulty in extracting not only spatial but also temporal features and human action recognition (HAR) is a representative field of research that applies convolutional neural network (CNN) to video data. The performance for action recognition has improved, but owing to the complexity of the model, some still limitations to operation in real-time persist. Therefore, a lightweight CNN-based single-stream HAR model that can operate in real-time is proposed. The proposed model extracts spatial feature maps by applying CNN to the images that develop the video and uses the frame change rate of sequential images as time information. Spatial feature maps are weighted-averaged by frame change, transformed into spatiotemporal features, and input into multilayer perceptrons, which have a relatively lower complexity than other HAR models; thus, our method has high utility in a single embedded system connected to CCTV. The results of evaluating action recognition accuracy and data processing speed through challenging action recognition benchmark UCF-101 showed higher action recognition accuracy than the HAR model using long short-term memory with a small amount of video frames and confirmed the real-time operational possibility through fast data processing speed. In addition, the performance of the proposed weighted mean-based HAR model was verified by testing it in Jetson NANO to confirm the possibility of using it in low-cost GPU-based embedded systems.


Author(s):  
Cheyma BARKA ◽  
Hanen MESSAOUDI-ABID ◽  
Houda BEN ATTIA SETTHOM ◽  
Afef BENNANI-BEN ABDELGHANI ◽  
Ilhem SLAMA-BELKHODJA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document