scholarly journals Evaluating the alignment of sequence diagrams with system behavior

2021 ◽  
Vol 180 ◽  
pp. 502-506
Author(s):  
Atif Mashkoor ◽  
Alexander Egyed
2012 ◽  
Vol 2012 ◽  
pp. 1-22
Author(s):  
Ashalatha Nayak ◽  
Debasis Samanta

UML 2.0 sequence diagrams are used to synthesize test scenarios. A UML 2.0 sequence diagram usually consists of a large number of different types of fragments and possibly with nesting. As a consequence, arriving at a comprehensive system behavior in the presence of multiple, nested fragment is a complex and challenging task. So far the test scenario synthesis from sequence diagrams is concerned, the major problem is to extract an arbitrary flow of control. In this regard, an approach is presented here to facilitate a simple representation of flow of controls and its subsequent use in the test scenario synthesis. Also, the flow of controls is simplified on the basis of UML 2.0 control primitives and brought to a testable form known as intermediate testable model (ITM). The proposed approach leads to the systematic interpretation of control flows and helps to generate test scenarios satisfying a set of coverage criteria. Moreover, the ability to support UML 2.0 models leads to increased levels of automation than the existing approaches.


2018 ◽  
Author(s):  
Gerilyn S. Soreghan ◽  
◽  
Michael J. Soreghan ◽  
Nicholas G. Heavens

Author(s):  
Armin Morasaei ◽  
Aria Ghabussi ◽  
Soheila Aghlmand ◽  
Maziar Yazdani ◽  
Shahrizan Baharom ◽  
...  

Author(s):  
Daniela Schmid ◽  
Neville A. Stanton

Systems thinking methods have evolved into a popular toolkit in Human Factors to analyze complex sociotechnical systems at early design stages, such as future airliners’ single pilot operations (SPO). A quantitative re-analysis of studies from a systematic literature review (Schmid & Stanton, 2019b) was conducted to categorically assess their contributions to researching SPO and to fitting their systems thinking methods to contemporary Human Factors problems. Although only 15 of 79 publications applied systems thinking methods to operational, automation, and the pilot incapacitation issue(s) of SPO, these studies provided a comprehensive concept of operations that is able to deal with many issues of future single-piloted airliners. These theoretical models require further evaluation by looking at the empirical instances of system behavior. Finally, the hierarchical structures in system’s development and operations from systems thinking enable Human Factors professionals and researchers to approach SPO systematically.


2021 ◽  
Vol 34 (2) ◽  
pp. 139-153
Author(s):  
Boudewijn van den Berg ◽  
Jan R. Buitenweg

AbstractMonitoring nociceptive processing is a current challenge due to a lack of objective measures. Recently, we developed a method for simultaneous tracking of psychophysical detection probability and brain evoked potentials in response to intra-epidermal stimulation. An exploratory investigation showed that we could quantify nociceptive system behavior by estimating the effect of stimulus properties on the evoked potential (EP). The goal in this work was to accurately measure nociceptive system behavior using this method in a large group of healthy subjects to identify the locations and latencies of EP components and the effect of single- and double-pulse stimuli with an inter-pulse interval of 10 or 40 ms on these EP components and detection probability. First, we observed the effect of filter settings and channel selection on the EP. Subsequently, we compared statistical models to assess correlation of EP and detection probability with stimulus properties, and quantified the effect of stimulus properties on both outcome measures through linear mixed regression. We observed lateral and central EP components in response to intra-epidermal stimulation. Detection probability and central EP components were positively correlated to the amplitude of each pulse, regardless of the inter-pulse interval, and negatively correlated to the trial number. Both central and lateral EP components also showed strong correlation with detection. These results show that both the observed EP and the detection probability reflect the various steps of processing of a nociceptive stimulus, including peripheral nerve fiber recruitment, central synaptic summation, and habituation to a repeated stimulus.


2013 ◽  
Vol 33 (3) ◽  
pp. 49-50
Author(s):  
John B. Goodenough
Keyword(s):  

2021 ◽  
Vol 11 (13) ◽  
pp. 5944
Author(s):  
Gunwoo Lee ◽  
Jongpil Jeong

Semiconductor equipment consists of a complex system in which numerous components are organically connected and controlled by many controllers. EventLog records all the information available during system processes. Because the EventLog records system runtime information so developers and engineers can understand system behavior and identify possible problems, it is essential for engineers to troubleshoot and maintain it. However, because the EventLog is text-based, complex to view, and stores a large quantity of information, the file size is very large. For long processes, the log file comprises several files, and engineers must look through many files, which makes it difficult to find the cause of the problem and therefore, a long time is required for the analysis. In addition, if the file size of the EventLog becomes large, the EventLog cannot be saved for a prolonged period because it uses a large amount of hard disk space on the CTC computer. In this paper, we propose a method to reduce the size of existing text-based log files. Our proposed method saves and visualizes text-based EventLogs in DB, making it easier to approach problems than the existing text-based analysis. We will confirm the possibility and propose a method that makes it easier for engineers to analyze log files.


Author(s):  
Neville A. Stanton ◽  
James W. Brown ◽  
Kirsten M. A. Revell ◽  
Jisun Kim ◽  
Joy Richardson ◽  
...  

AbstractDesign of appropriate interaction and human–machine interfaces for the handover of control between vehicle automation and human driver is critical to the success of automated vehicles. Problems in this interfacing between the vehicle and driver have led, in some cases, to collisions and fatalities. In this project, Operator Event Sequence Diagrams (OESDs) were used to design the handover activities to and from vehicle automation. Previous work undertaken in driving simulators has shown that the OESDs can be used to anticipate the likely activities of drivers during the handover of vehicle control. Three such studies showed that there was a strong correlation between the activities drivers represented in OESDs and those observed from videos of drivers in the handover process, in driving simulators. For the current study, OESDs were constructed during the design of the interaction and interfaces for the handover of control to and from vehicle automation. Videos of drivers during the handover were taken on motorways in the UK and compared with the predictions from the OESDs. As before, there were strong correlations between those activities anticipated in the OESDs and those observed during the handover of vehicle control from automation to the human driver. This means that OESDs can be used with some confidence as part of the vehicle automation design process, although validity generalisation remains an important goal for future research.


Sign in / Sign up

Export Citation Format

Share Document