scholarly journals Influence of the Cutting Edge Radius and the Cutting Edge Preparation on Tool Life and Cutting Forces at Inserts with Wiper Geometry

2014 ◽  
Vol 69 ◽  
pp. 565-573 ◽  
Author(s):  
Jaroslava Fulemova ◽  
Zdeněk Janda
Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 166 ◽  
Author(s):  
Tomáš Vopát ◽  
Martin Sahul ◽  
Marián Haršáni ◽  
Ondřej Vortel ◽  
Tomáš Zlámal

Nanocomposite AlCrSiN hard coatings were deposited on the cemented carbide substrates with a negative substrate bias voltage within the range of −80 to −120 V using the cathodic arc evaporation system. The effect of variation in the bias voltage on the coating-substrate adhesion and nanohardness was investigated. It was clear that if bias voltage increased, nanohardness increased in the range from −80 V to −120 V. The coating deposited at the bias voltage of −120 V had the highest nanohardness (37.7 ± 1.5 GPa). The samples were prepared by brushing and wet microblasting to finish a surface and prepare the required cutting edge radii for the tool life cutting tests and the coating adhesion observation. The indents after the static Mercedes indentation test were studied by scanning the electron microscope to evaluate the coating-substrate adhesion. The longer time of edge preparation with surface finishing led to a slight deterioration in the adhesion strength of the coating to the substrate. The tool wear of cemented carbide turning inserts was studied on the turning centre during the tool life cutting test. The tested workpiece material was austenitic stainless steel. The cemented carbide turning inserts with larger cutting edge radius were worn out faster during the machining. Meanwhile, the tool life increased when the cutting edge radius was smaller.


2017 ◽  
Vol 107 (06) ◽  
pp. 453-460
Author(s):  
E. Prof. Uhlmann ◽  
J. Bruckhoff

Angesichts steigender Anforderungen an Zerspanwerkzeuge nimmt die Schneidkantenpräparation einen immer größer werdenden Stellenwert ein, da sich so die Standzeit von Zerspanwerkzeugen erhöhen lässt. Die bisher eingesetzten Präparationsverfahren eignen sich meist nur für einfache Verrundungen an der Schneidkante. In umfangreichen Untersuchungen wurde die Eignung von Formschleifprozessen zur Herstellung definierter Schneidkantenmikrogeometrien anhand von Arbeitsergebnissen analysiert.   Due to increasing demands on cutting tools cutting edge preparation has a high priority because it influences the tool life. Current cutting edge preparation processes can only generate simple roundings on the cutting edge. By extensive investigations the suitability of form grinding processes for the production of defined microgeometries on the cutting edge was analysed.


2021 ◽  
Vol 111 (11-12) ◽  
pp. 833-839
Author(s):  
Kolb Moritz ◽  
Tim Mayer ◽  
Nico Rasenberger

Dieser Beitrag beschreibt, wie sich die Standzeit von Kreissägeblättern durch Schneidkantenpräparation gezielt beeinflussen lässt. Hierfür wurden zunächst einzelne Segmente aus einem Sägeblatt herausgetrennt und Einzahnproben mit variierenden Schneidenmikrogeometrien mittels Bürstspanen präpariert. Anschließend wurde das Einsatz- und Verschleißverhalten der zuvor hergestellten Proben in einem Kreissäge-Modellversuch untersucht.   This article describes how the service life of circular saw blades can be specifically influenced by cutting edge preparation. For this purpose, individual segments were first cut out of a saw blade. These single-tooth specimens with varying cutting edge microgeometries were prepared by abrasive brushing. Then the usage and wear behavior of the previously produced samples was investigated in a circular saw model test.


2012 ◽  
Vol 201-202 ◽  
pp. 1178-1181
Author(s):  
Guo Bing Chai ◽  
Wei Wang ◽  
Ai Bing Yu

Edge preparation is not only the process of grinding proper geometry of cutting edge or removing micro-cracks on cutting edge region, but also a way of improving cutting tool life. In this study, cutting models with different cutting edge radius were set up with FEM software. Medium carbon steel cutting tests were carried out using cutting tools with different edge radius. Cutting tool wear was simulated and measured for comparison. The simulation results show that edge radius has influences on tool wear. Tool cutting behavior is concerned with edge radius. A proper edge radius will improve the tool life. The experimental results show that proper edge preparation could improve tool impact resistance capability and reduce tool wear. The cutting tool life can be prolonged with suitable edge preparation. Edge preparation can improve cutting performance of cutting tool.


2013 ◽  
Vol 797 ◽  
pp. 202-207
Author(s):  
Chang Ying Wang ◽  
Jia Jin Tian ◽  
Qing Long An ◽  
Ming Chen

Ultra-high-strength steel 30Cr3SiNiMoVA (30Cr3) which has excellent mechanical properties is usually used to manufacture the key parts in aviation industry. Precision hard milling is an efficiency way to machine 30Cr3 instead of grinding. Rounded cutting edge radius has important influence on the machining process due to small depth of cut. In order to better understanding the influence of rounded cutting edge radius, cutting forces, cutting temperature, critical depth of cut, etc., is analyzed by using finite element method (FEM). The results show that cutting forces in theydirection are more sensitively to the rounded cutting edge radii. Ploughing effect is also observed at the end of the climb milling process and it has significant influence on the quality of the machined surface. Simulation reveals that the increment of rounded cutting edge radius can lead to the increment of critical depth of cut correspondingly and the proportionality factor is about 14%.


2007 ◽  
Vol 10-12 ◽  
pp. 353-358 ◽  
Author(s):  
Yu Wang ◽  
Fu Gang Yan ◽  
P. Wang ◽  
Cai Xu Yue ◽  
Xian Li Liu

Machining hardened steels has become an important manufacturing process, particularly in the automotive and bearing industries. Hardened steel GCr15 with its harness between HRC50 and HRC65 is one kind of more difficult machining material. Abrasive processes such as grinding have typically been required to machine hardened steels, but advances in machine tools and a new cutting material of polycrystalline cubic boron nitride (PCBN) have allowed hard turning on modern lathes to seems to gain an ever increasing industrial acceptance as an economically and environmentally friendly alternative to many grinding applications. In this paper, based on large deformation theory and updated Lagrangian procedure, a coupled thermo-mechanical plane strain orthogonal precision cutting model with general finite element analysis software is developed to the influence of cutting edge preparation on the cutting of GCr15 with PCBN tool, such as cutting forces, shear angle, and cutting temperature. The three major designs of cutting edge preparation are used on most commercial cutting inserts: a) sharp edge, b) honed edge, and c) chamfer edge. The friction between the tool and the chip is assumed to follow a shear model and the local adaptive remeshing technique is used for the formation of chip. The calculated principle cutting forces are compared with published data and found to be in good agreement. The simulation results can be used as a practical tool both by researchers and toolmakers to design new tools with rational tool edge and to optimize the cutting process.


Author(s):  
Ramesh Kuppuswamy ◽  
Kapui Mubita

Electro-polishing was used as an alternative to mechanical polishing for the cutting edge preparation of tungsten carbide (WC) ball nose end mills. High-quality cutting edge surfaces with roughness of magnitude 0.3–0.35 µm was achieved using the electro-polishing process. A direct current of 0.96 A was passed through an electrolytic cell containing the electrolyte sodium hydroxide with a concentration—2.5 mol/dm3. The ball nose end mill was suspended as the anode and a stainless steel (SS304) as the cathode. The ball nose end mill was electro-polished using the optimized parameters which was obtained through performing the preliminary experiments on tungsten carbide coupons of size D6 × 20 mm. The effects of electro-polishing on the surface texture of the ball nose end mill were determined using surface texture examinations. Machining tests were conducted on Ti6Al4V alloy to understand the growth of flank wear on the electro-polished ball nose end mills. After every 5 m of cutting distance, flank wear measurements were done for both the regular ball nose end mill and the electro-polished ball nose end mills. The results revealed that the electro-polished ball nose end mill reached a flank wear of 0.15 mm after a cutting distance of 550 m. This was significantly more than the cutting distance of the standard ball nose end mill of magnitude 350 m for the same amount of flank wear. This showed an increase in tool life of over 50%.


2019 ◽  
Author(s):  
A. Celaya ◽  
O. Pereira ◽  
H. González ◽  
G. Gómez-Escudero ◽  
P. Fernández-Lucio ◽  
...  

2019 ◽  
Vol 109 (11-12) ◽  
pp. 833-839
Author(s):  
P. Frank ◽  
A. Otto

Die nachfolgende Studie ist an der Technischen Hochschule Georg Agricola zu Bochum entstanden. Sie gibt einen Überblick über die Grundlagen, Anwendungen und Möglichkeiten der Werkzeugoptimierung und somit der Standzeiterhöhung mithilfe des Hochpräzisionsbürstens (Flakkotieren) an Mikrotorusfräsern. Ein Abgleich von verschiedenen präparierten und sich im Ausgangszustand befindlichen Mikrofräsern sollen hierbei die Möglichkeiten und Grenzen der Schneidkantenpräparation aufzeigen.   The following study was carried out at the Technical University Georg Agricola in Bochum. It provides an overview of the basics, applications and opportunities for improving tools and thus for increasing tool life with the aid of high-precision brushing (flakkoting) on milling tools for hard milling. Comparing a number of prepared micro milling cutters in their initial state, it demonstrates the opportunities and limits of cutting edge preparation.


Sign in / Sign up

Export Citation Format

Share Document